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Top quark

Mass of the top quark obtained through combining the
measurements at the Tevatron and LHC colliders is
mt = 173.34± 0.27 (stat) ± 0.71 (syst) GeV
[ATLAS and CDF and CMS and D0 Collaborations (2014)].

I Strong coupling to the Higgs boson
I Crucial to the hierarchy problem



Top quark pair production

I The top quark pair production is the main source of the top
quark events in the Standard Model (SM).

I Many New Physics models involve heavy top partners
which then decay into a top quark pair.

The study of the t t̄ pair production at hadron colliders can
I shed light on the electroweak symmetry breaking

mechanism.
I provide information on the backgrounds of many NP

models.



Top quark pair production
I Because of its large mass the top quark decay before

hadronization, allowing for a better experimental
measurements.

I σt t̄ (14 TeV) ∼ 980 pb
L ∼ 1032 cm2s−1 - 1 event/10 s

More precise calculations are needed from the theory side



QCD corrections
I NLO QCD corrections are calculated by [Nason, Dawson and Ellis

(1988), Beenakker, Kuijf, van Neerven and Smith (1989), Beenakker,
van Neerven, Meng, Schuler and Smith (1989)].

I NNLO corrections in the threshold region are worked out in
[Ahrens, Ferroglia, Neubert, Pecjak, Yang (2010), Beneke, Falgari,
Schwinn (2010), Cacciari, Czakon, Mangano, Mitov, Nason (2012)].

I The calculation of the full NNLO QCD corrections was
completed for the total cross section and for the t t̄ asymmetry.
[Barnreuther, Czakon, Mitov (2012), Czakon, Mitov (2012, 2013),
Czakon, Fiedler, Mitov (2013, 2014)].

I The first NNLO results for differential distributions at the Tevatron
and LHC have been computed [Czakon, Heymes, Mitov (2016),
Czakon, Fiedler, Heymes, Mitov (2016)].

I Other computations of differential distributions are underway
[Abelof, Gehrmann-De Ridder, Maierhofer (2014), Abelof,
Gerhrmann-de Ridder (2014), Abelof, Gerhrmann-de Ridder, Majer
(2016)].

I Last year the NNLO corrections for all off-diagonal partonic
channels have been computed by our group [Bonciani, Catani,
Grazzini, HS, Torre].



qT distribution

I When q2
T ∼ M2, αS(M2) is small, and the standard fixed

order expansion is theoretically justified.
I When q2

T � M2 large logarithms of the form
αn

S log(M2/q2
T ) appear, due to soft and collinear gluon

emissions. Effective expansion variable is the
αn

S log(M2/q2
T ), which can be ∼ 1 even for small αS. These

large logarithms need to be resummed to all orders in αS,
in order to get reliable predictions over the whole range of
the transverse momenta.

The resummation of large logs results in exponentiating these
large logarithmic terms

σ(res) ∼ σ(0)C(αS)exp {Lg1(αSL) + g2(αSL) + αSg3(αSL) + . . .} .

LL NLL NNLL�
��>

hard-virtual



Resummation for the t t̄ production

Production of coloured particles imposes additional
complications compared to the production of a colourless
system.

I Soft and collinear QCD radiation from the final state
particles

I Colour flow between initial and final state particles leading
to non-trivial colour correlations

The top quark is massive

I The collinear limit is not singular - LL structure unaffected

I Additional NLL from large-angle soft radiation



Resummation for the t t̄ production

I The first attempt to develop a qT -resummation formalism at
next-to-leading logarithmic (NLL) accuracy for t t̄ production
was done in [Berger, Meng (1994), Mrenna, Yuan (1997)].
However, they did not consider colour mixing between
singlet and octet final states and missed the initial-final
gluon exchange.

I The resummation for the t t̄ qT spectrum, based on soft
collinear effective theory (SCET), was performed at
NNLL+NLO. [Zhu, Li, Li, Shao, Yang (2013)]. This work is limited
to the study of the qT cross section after integration over
the azimuthal angles of the produced heavy quarks.

I The qT -resummation in QCD was performed at the
fully-differential level with respect to the kinematics of the
produced heavy quarks. [Catani, Grazzini, Torre (2014)].



The resummation procedure at small qT
h1(P1) + h2(P2)→ Q(p3) + Q̄(p4) + X .

I Consider the most general fully-differential cross section
dσ(P1,P2; qT,M, y ,Ω)

d2qTdM2dydΩ
,

where P1 and P2 are the momenta of incoming hadrons,
qT, M and y are the transverse momentum vector, invariant
mass and rapidity of the QQ̄ pair, Ω is a set of two
additional independent kinematical variables that specify
the angular distribution of heavy quarks with respect to the
momentum q of the QQ̄ pair. For instance Ω = {y3, φ3}.

I Decompose the cross section in a singular and a regular
part

dσ = dσ(sing) + dσ(reg) .

I dσ(sing) embodies all the singular terms in the limit qT → 0.
I dσ(reg) includes the remaining non-singular terms.

Z
ZZ~

should be replaced by dσres
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The all-order resummation formula
I Is obtained by working in impact parameter b space.

dσ(res)

d2qTdM2dydΩ
=

M2

s

∑
c=q,q̄,g

[
dσ(0)

cc

] ∫ d2b
(2π)2 eibqTSc(M,b)

×
∑
a1,a2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
[(H∆)C1C2]cc̄;a1a2

×

fa1/h1
(x1/z1,b2

0/b
2)fa2/h2

(x2/z2,b2
0/b

2) .

b0 = 2e−γE (γE is the Euler number).

x1 =
M√

s
e+y x2 =

M√
s

e−y .

ln Sc(M,b) =

∫ b2
0/b2

M2

dq2

q2

[
Ac(αS(q2)) ln

M2

q2 + Bc(αS(q2))

]
.

LL: A(1)
c , NLL: A(2)

c ,B(1)
c .
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The soft-parton factor ∆
[(H∆)C1C2]qq̄;a1a2

= H∆qq̄Cqa1

(
αS
(
b2

0/b
2))Cq̄a2

(
αS
(
b2

0/b
2)) .

[(H∆)C1C2]gg;a1a2
= H∆ggCµ1ν1

ga1

(
b;αS

(
b2

0/b
2))·Cµ2ν2

ga2

(
b;αS

(
b2

0/b
2)) .

H∆qq̄ =
〈M̃qq̄→QQ̄ |∆|M̃qq̄→QQ̄〉

α2
S(M2)

∣∣∣M(0)

qq̄→QQ̄
(p1,p2,p3,p4)

∣∣∣2 .
|M̃cc̄→QQ̄〉 =

[
1− Ĩcc̄→QQ̄

]
|Mcc̄→QQ̄〉 .

∆(b,M; y34, φ3) = V†(b,M; y34)D(αS
(
b2

0/b
2) ;φ3b, y34)V(b,M; y34) .

V(b,M; y34) = P̄qexp

{
−
∫ M2

b2
0/b2

dq2

q2 Γt (αS(q2); y34)

}
.

I Γt is the soft anomalous dimension matrix.
I D is the azimuthal-correlation matrix.
〈D(αS;φ3b, y34)〉av. = 1.

I All the perturbative coefficients are computed at NLO QCD.



The soft anomalous dimension operator

Γt (αS; y34) =
αS

π
Γ

(1)
t (y34) +

(αS

π

)2
Γ

(2)
t (y34) +

∞∑
n=3

(αS

π

)n
Γ

(n)
t (y34) .

I The colour basis: s-channel singlet-octet exchange tensors
I cqq̄

1 = δijδkl , cqq̄
2 = tc

ji t
c
kl ,

I cgg
1 = δabδkl , cgg

2 = if abc tc
kl , cgg

3 = dabc tc
kl .

Γij =
1

〈ci |ci〉
〈ci |Γt |cj〉 .

The soft anomalous dimension matrix is non-diagonal
- needs to be diagonalized!

Transform the original basis |I〉 = RcI |c〉 by the diagonalization matrix

R−1ΓR = Γ diag .

In the new basis the matrix element of soft anomalous dimension
operator is given by

Γ diag
IJ = 〈XI |Γt |J〉 , |XI〉 =

∑
J

(
S−1)

JI |J〉 , SIJ = 〈I|J〉 .



RG evolution of the soft evolution operator
V(b,M; y34) = P̄qexp

{
−
∫ M2

b2
0/b2

dq2

q2 Γt (αS(q2); y34)

}
.

V fulfils the following evolution equation
dV(b,Q; y34)

d ln
(
b2

0/b2
) = Γt (αS(b2

0/b
2); y34)V(b,Q; y34) .

The solution to this equation can be written as

V(b,Q) = K(αS(b2
0/b

2))V(LO)(αS(b2
0/b

2), αS(Q2))K−1(αS(Q2)) ,

K(αS) = 1 +
∞∑

n=1

(αS

π

)n
K(n) .

dV(LO)(αS, α
′
S)

d lnαS
= − 1

β0
Γ

(1)
t V(LO)(αS, α

′
S) ,

V(LO)(αS(b2
0/b

2), αS(Q2)) = exp
{

1
β0

Γ
(1)
t ln

(
αS(Q2)

αS(b2
0/b2)

)}
.

V (LO)
cc′ =

1
〈c|c〉

〈c|V(LO)|c′〉 =
∑

I

RcI exp

{
λ

(1)
I
β0

∫ Q2

b2
0/b2

dq2

q2 β(αS(q2))

}
R−1

Ic′ ,

λ
(1)
I are the eigenvalues of first-order soft anomalous dimension matrix.



The NLO+NLL structure of the final-state radiation
The H∆ factor can be organized as follows to all orders

H∆ ∼
∑
{C}

H{C}(αS(µ2
R)) exp{G{C}(αS(µ2

R)} ,

H{C}(αS) = α2
S

(
H{C},(0) +

αS

π
H{C},(1) +O(αS(µ2

R))
)
,

G{C}(αS) = g(2)
{C}(αS) +

αS

π
g(3)
{C}(αS) + · · ·

��:NLL ��:NNLL

I At NLO+NLL (Q = M)

g(2)
C (αSL) =

λ
(1)∗
I + λ

(1)
J

β0
ln(1− λ) ,

with λ = 1
πβ0αS(µ2

R)L, L = ln Q2b2

b2
0

.

H∆ ∼
∑
{C}

α2
S

(
H{C},(0) exp{g(2)

C }+
αS

π
H{C},(1)

)
,

H{C},(0) = 〈M̃(0)|XI〉SIJ 〈XJ |M̃(0)〉

H{C},(1) =
(
〈M̃(1)|XI〉 〈XJ |M̃(0)〉+ 〈M̃(0)|XI〉 〈XJ |M̃(1)〉

)
SIJ



Resummation in MC event generators

qT -resummation is effectively performed by Monte Carlo event
generators.

I Based on the QCD factorization at the level of squared
matrix elements.

In the case of strongly interacting final state particles the
additional soft singularities are colour correlated.

I The large logs due to the soft radiation off the final state
and due to the initial-final state interference are not under
control through the shower.



Preliminary results at NLO+NLL
I Large distortion of the spectrum due to soft radiation off the top

quarks.



Resummation scale variation
I The resummation scale variation is of the order of 15% up to

qT = 100 GeV. Increases at large transverse momenta.



Renormalisation and factorisation scale variation
I The renormalisation and factorisation scale variation is of the

order of 15% in the low-qT region.

I shrinks a bit in the intermediate region, and increases at large
transverse momenta, reaching to 100%.



Comparison to the data
I Both CMS and ATLAS experiments measured the qT distribution

of the t t̄ pair at the LHC at
√

s = 7 TeV. CMS-PAS-TOP-11-013, G.
Aad et al. [ATLAS Collaboration], 2013.

I Very recently ATLAS has also published the measurements of
normalized differential cross sections at

√
s = 8 TeV M. Aaboud et

al. [ATLAS Collaboration], 2016.
pT ,t t̄ [GeV] 1

σ
dσ

dpT ,t t̄
[TeV−1] ATLAS 1

σ
dσ

dpT ,t t̄
[TeV−1] NLO+NLL

0-30 14.3 ± 1.0 14.96 ± 0.99
30-70 7.60 ± 0.16 7.81 ± 0.36

70-120 2.94 ± 0.28 2.84 ± 0.28
120-180 1.14 ± 0.12 0.99 ± 0.08
180-250 0.42 ± 0.04 0.34 ± 0.02
250-350 0.143 ± 0.018 0.096 ± 0.020

350-1000 0.0099 ± 0.0015 0.0062 ± 0.0040

Table : Normalized pT ,t t̄ distribution at
√

s = 8 TeV.
I Good agreement with the experimental results along the whole

range of transverse momenta.
I The theoretical uncertainties are of the order of experimental

uncertainties.



qT -subtraction
Knowledge of the low qT limit is essential also for the fixed order
calculation in the qT -subtraction formalism. It has been originally
proposed for the production of colourless high-mass systems in
hadron collisions. [Catani, Grazzini (2007)].

I pp → H [Catani, Grazzini (2007)].
I pp → V [Catani, Cieri, Ferrera, de Florian, Grazzini (2009)].
I pp → γγ [Catani, Cieri, Ferrera, de Florian, Grazzini (2011)].
I pp →WH [Ferrera, Grazzini, Tramontano (2011)].
I pp → Zγ [Grazzini, Kallweit, Rathlev, Torre (2013)].
I pp → ZZ [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von

Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs (2014)].
I pp →W +W− [Gehrmann, Grazzini, Kallweit, Maierhöfer, von

Manteuffel, Pozzorini, Rathlev, Tancredi (2014)].
I pp → ZH [Ferrera, Grazzini, Tramontano (2014)].
I pp →WZ [Grazzini, Kallweit, Rathlev, Wiesemann (2016)].

(talk by M. Wiesemann)
I pp → HH [de Florian, Grazzini, Hanga, Kallweit, Lindert, Meierhöfer,

Mazzitelli, Rathlev (2016)]. (talk by J. Mazzitelli)



qT -subtraction for t t̄

I The fully differential cross section at N(NLO):

dσt t̄
N(NLO) = Ht t̄

N(NLO) ⊗ dσt t̄
LO +

[
dσt t̄+jet

N(LO) − dσCT
N(LO)

]
.

Regular as qT → 0

I Ht t̄
N(NLO) is the hard factor, which contains information on

the virtual corrections to the LO process.
I dσt t̄

LO is the Born cross section.

I dσt t̄+jet
N(LO) is the N(LO) cross section of t t̄+jet(s) process.

I dσCT
N(LO) is the counterterm, which can be derived by

expanding the resummation formula.



Azimuthal correlations

• Production of a colourless system

I The gluonic collinear functions are the only source of
azimuthal correlations

Cµν
ga (z; p1,p2,b) = dµ,ν(p1,p2)Cga(z)+Dµ,ν(p1,p2; b)Gga(z)

• Top-quark pair production

∆(b,M; y34, φ3) = V†(b,M; y34)D (αS;φ3b, y34) V(b,M; y34) .

I Additional azimuthal correlations produced by the dynamics
of soft-parton radiation, embodied in D.

D (αS;φ3b, y34) = 1 +
αS

π
D(1) (φ3b, y34) +O(α2

S)

〈D
(
αS
(
b2

0/b
2
)

;φ3b, y34
)
〉av. = 1 - vanishing contribution to 〈σ〉av.at O(αS)

But contributes at O(α2
S) due to the interference of the initial-final

state azimuthal correlations
-non-trivial integration over the azimuthal angle (computed analytically!)



Our fixed-order implementation

Up to NLO our implementation is based on
I The scattering amplitudes and phase space generation of

MCFM program.
I We use the corresponding routines of Higgs boson

production code HNNLO and vector boson production
code DYNNLO, suitably modified for the t t̄ production.

At NNLO accuracy the t t̄ + jet cross section is evaluated by
using the MUNICH code which provides:

I Fully automatic implementation of the NLO dipole
subtraction formalism.

I Interface to the OPENLOOPS one-loop generator.



Results at NLO

I Distributions for the t t̄ system.

I Very good agreement!



Results at NLO

I Distributions for the top quark.

I Very good agreement!



Results at NNLO

Cross section [pb] O(α4
S)qg O(α4

S)q(q̄)q′

qT subtraction -2.25(5) 0.151(3)
Top++ -2.253 0.148

Table : O(α4
S) contribution to the total cross section for t t̄ production

at the LHC at
√

s = 8 TeV.

Cross section [pb] O(α4
S)qg O(α4

S)q(q̄)q′

qT subtraction -61.5(5) 1.33(1)
Top++ -61.53 1.33

Table : O(α4
S) contribution to the total cross section for t t̄ production

at the LHC at
√

s = 2 TeV.

qg = qg + q̄g, q(q̄)q′ = qq + q̄q̄ + qq′ + q̄q̄′ + qq̄′ + q̄q′



Summary
I I have presented the computation of the qT -resummed cross

section for the t t̄ production at hadron colliders at NLO+NLL in
QCD.

I The calculation is more complicated with respect to
hadroproduction of colourless systems due to the additional
radiation of soft gluons off the top quarks.

I The resummation of large logs due to the soft radiation off top
quarks leads to a sizeable distortion of the transverse
momentum spectrum.

I Within the uncertainties our results agree with the most
up-to-date ATLAS measurement of the qT distribution.

I The uncertainties due to the scale variations are large, being of
the order of experimental uncertainties.

I We have used the knowledge of the low qT behaviour of the
amplitudes to extend the qT subtraction method for the t t̄
production at hadron colliders at NLO and NNLO in all
non-diagonal channels.

I We have implemented the calculation in a fully-differential Monte
Carlo program and found good agreement with the known
results.



Backup Slides



Comparision to the fixed order
I The spectrum for Q = mt

2 matches very well the fixed order curve
at large transverse momenta.

I For the scales Q = mt and Q = 2mt the need of a switching
procedure at intermediate values is evident.


