One loop further: 4 and 5 loop physics

Ben Ruijl*, Franz Herzog, Takahiro Ueda, Jos Vermaseren, Andreas Vogt

*LCDS Leiden and Nikhef Amsterdam

Sep 07, 2016

Forcer package

- We have built a program that calculates four-loop massless propagator diagrams
- Express diagrams as linear combinations of diagrams with fewer propagators

Parametric reductions Splitting functions

Identify substructures

Figure: Guaranteed to remove a green or blue line

Triangle generalizations: diamonds [Ruijl,Ueda,Vermaseren '15]

Parametric reductions Splitting functions

Example reduction

Parametric reductions Splitting functions

Example reduction

Four	loops
Five	loops

Parametric reductions Splitting functions

Example reduction

Four	loops
Five	loops

Parametric reductions Splitting functions

Example reduction

Parametric reductions Splitting functions

3-loop reduction graph

Figure: Reduction graph for 3 loop diagrams

Parametric reductions Splitting functions

4-loop reduction graph

Figure: Reduction graph for 4 loop diagrams

Parametric reductions Splitting functions

4-loop reduction graph

Figure: Part of reduction graph for 4 loops

Manual solutions

- 21 topologies do not have substructures
- Solve recursion relations parametrically
- Much faster than Laporta methods

$$I(n_1, n_2, n_3, n_4, n_5) = n_1 I(n_1 - 1, n_2, n_3, n_4, n_5) + n_2 I(n_1, n_2 + 1, n_3, n_4, n_5) + \dots$$

Parametric solution vs. Laporta (I)

1)
$$I(n_1, n_2, n_3, n_4, n_5) = + I(n_1 - 1, n_2, n_3, n_4, n_5)$$

 $+ n_2 I(n_1, n_2 + 1, n_3, n_4, n_5)$
2) $I(n_1, n_2, n_3, n_4, n_5) = + I(n_1, n_2, n_3, n_4 - 1, n_5)$
 $+ I(n_1, n_2 + 1, n_3, n_4, n_5)$
 $\Rightarrow I(n_1, n_2, n_3, n_4, n_5) = \frac{1}{n_2 - 1} (n_2 I(n_1, n_2, n_3, n_4 - 1, n_5))$
 $- I(n_1 - 1, n_2, n_3, n_4, n_5))$

Next step in reduction

Solve $I(n_1, 1, n_3, n_4, n_5)$ since $n_2 > 2$ will have $n_1 = 0$ or $n_4 = 0!$

Parametric solution vs. Laporta (II)

Laporta for $n_2 = 2$:

1)
$$I(1,2,1,1,1) = I(0,2,1,1,1) + 2I(1,3,1,1,1)$$

2) $I(1,2,1,1,1) = I(1,2,1,0,1) + I(1,3,1,1,1)$
 $\Rightarrow I(1,2,1,1,1) = 2I(1,2,1,0,1) - I(0,2,1,1,1)$

- System needs to be brute forced again for every $n_2 > 2$
- A lot of equations are generated that drop out of the answer

Public enemy #1

- 9 propagators that should go to 1
- 5 irreducible dot products that should go to 0
- Took 3 months to find solution!

Four loops

Parametric reductions Splitting functions

Reduction rule

id,ifmatch->bubu1,

Z(n1?pos_,n2?pos_,n3?pos_,n4?pos_,n5?pos_,n6?pos_,n7?pos_, n8?pos_,n9?pos_,n10?neg0_,n11?neg0_,n12?neg0_,n13?neg0_,n14?neg_)

= -rat(1,-2*ep-2*n1-n3-n6-n12-n14+4)*(

+Z(-1+n1,-1+n2,n3,n4,1+n5,n6,n7,n8,n9,n10,n11,n12,n13,1+n14)*rat(-n5,1) +Z(-1+n1,1+n2,n3,n4,-1+n5,n6,n7,n8,n9,n10,n11,n12,n13,1+n14)*rat(n2,1) +Z(-1+n1,1+n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,n12,n13,1+n14)*rat(-n2,1) +Z(-1+n1,n2,1+n3,n4,n5,n6,n7,n8,-1+n9,n10,n11,n12,n13,1+n14)*rat(-n3,1) +Z(-1+n1,n2,n3,n4,-1+n5,n6,n7,n8,n9,n10,n11,1+n12,n13,1+n14)*rat(-n12,1) +Z(-1+n1,n2,n3,n4,1+n5,n6,n7,-1+n8,n9,n10,n11,n12,n13,1+n14)*rat(n5,1) +Z(-1+n1,n2,n3,n4,n5,n6,-1+n7,n8,n9,n10,n11,n12,1+n13,1+n14)*rat(-n13,1) +Z(-1+n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,1+n12,n13,1+n14)*rat(2*n12,1) +Z(-1+n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,n12,1+n13,1+n14)*rat(n13,1) +Z(-1+n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,n12,n13,2+n14)*rat(2*n14+2,1) +Z(-1+n1,n2,n3,n4,n5,n6,n7,n8,-1+n9,n10,n11,n12,1+n13,1+n14)*rat(n13,1) +Z(-1+n1,n2,n3,n4,n5,n6,n7,n8,n9,1+n10,-1+n11,n12,n13,1+n14)*rat(-n10,1) +Z(-1+n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,1+n12,n13,n14)*rat(-n12,1) +Z(-1+n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,1+n14)*rat(-n2+n5,1) +Z(n1,-1+n2,-1+n3,n4,n5,n6,n7,n8,n9,n10,n11,1+n12,n13,1+n14)*rat(n12,1) +Z(n1,-1+n2,-1+n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,2+n14)*rat(1+n14,1) +Z(n1,-1+n2,1+n3,n4,n5,n6,n7,n8,-1+n9,n10,n11,n12,n13,1+n14)*rat(n3,1)

+Z(n1.-1+n2.n3.-1+n4,n5,n6,n7,n8,n9,n10,1+n11,n12,n13,1+n14)*rat(n11,1) +Z(n1,-1+n2,n3,n4,-1+n5,n6,n7,n8,n9,n10,n11,1+n12,n13,1+n14)*rat(n12,1) +Z(n1,-1+n2,n3,n4,n5,-1+n6,n7,n8,n9,n10,n11,n12,n13,2+n14)*rat(-n14-1,1) +Z(n1,-1+n2,n3,n4,n5,n6,-1+n7,1+n8,n9,n10,n11,n12,n13,1+n14)*rat(2*n8,1) +Z(n1,-1+n2,n3,n4,n5,n6,-1+n7,n8,n9,n10,1+n11,n12,n13,1+n14)*rat(-n11,1) +Z(n1,-1+n2,n3,n4,n5,n6,-1+n7,n8,n9,n10,n11,n12,1+n13,1+n14)*rat(-n13,1) +Z(n1,-1+n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,1+n12,n13,1+n14)*rat(-2*n12,1) +Z(n1,-1+n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,n12,1+n13,1+n14)*rat(n13,1) +Z(n1,-1+n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,n12,n13,2+n14)*rat(-2*n14-2,1) +Z(n1,-1+n2,n3,n4,n5,n6,n7,1+n8,-1+n9,n10,n11,n12,n13,1+n14)*rat(-n8,1) +Z(n1,-1+n2,n3,n4,n5,n6,n7,n8,-1+n9,n10,n11,1+n12,n13,1+n14)*rat(-2*n12,1) +Z(n1,-1+n2,n3,n4,n5,n6,n7,n8,n9,1+n10,-1+n11,n12,n13,1+n14)*rat(n10,1) +Z(n1,-1+n2,n3,n4,n5,n6,n7,n8,n9,1+n10,n11,n12,n13,1+n14)*rat(-2*n10,1) +Z(n1,-1+n2,n3,n4,n5,n6,n7,n8,n9,n10,1+n11,n12,n13,1+n14)*rat(-n11,1) +Z(n1,-1+n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,1+n12,n13,n14)*rat(-n12,1) +Z(n1,1+n2,n3,n4,-1+n5,n6,n7,n8,n9,-1+n10,n11,n12,n13,1+n14)*rat(-n2,1) +Z(n1,1+n2,n3,n4,-1+n5,n6,n7,n8,n9,n10,n11,n12,n13,1+n14)*rat(-n2,1) +Z(n1,1+n2,n3,n4,n5,n6,n7,-1+n8,n9,-1+n10,n11,n12,n13,1+n14)*rat(2*n2,1) +Z(n1,1+n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,n12,n13,1+n14)*rat(n2,1) +Z(n1,n2,-1+n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,1+n12,n13,1+n14)*rat(-n12,1) +Z(n1,n2,-1+n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,n12,n13,2+n14)*rat(-n14-1,1) +Z(n1,n2,1+n3,n4,n5,n6,n7,n8,-1+n9,-1+n10,n11,n12,n13,1+n14)*rat(n3,1)

+Z(n1,n2,n3,n4,-1+n5,n6,-1+n7,n8,n9,n10,n11,n12,1+n13,1+n14)*rat(n13,1) +Z(n1,n2,n3,n4,-1+n5,n6,n7,n8,-1+n9,n10,n11,n12,1+n13,1+n14)*rat(-n13,1) +Z(n1,n2,n3,n4,-1+n5,n6,n7,n8,-1+n9,n10,n11,n12,n13,2+n14)*rat(1+n14,1) +Z(n1,n2,n3,n4,-1+n5,n6,n7,n8,n9,-1+n10,n11,1+n12,n13,1+n14)*rat(n12,1) +Z(n1,n2,n3,n4,-1+n5,n6,n7,n8,n9,n10,-1+n11,n12,1+n13,1+n14)*rat(n13,1) +Z(n1,n2,n3,n4,-1+n5,n6,n7,n8,n9,n10,n11,1+n12,n13,1+n14)*rat(n12,1) +Z(n1,n2,n3,n4,-1+n5,n6,n7,n8,n9,n10,n11,n12,1+n13,1+n14)*rat(n13,1) +Z(n1,n2,n3,n4,-1+n5,n6,n7,n8,n9,n10,n11,n12,n13,1+n14)*rat(-n2+n8-n13,1) +Z(n1,n2,n3,n4,n5,-1+n6,n7,-1+n8,n9,n10,n11,n12,n13,2+n14)*rat(1+n14,1) +Z(n1,n2,n3,n4,n5,n6,-1+n7,-1+n8,n9,n10,1+n11,n12,n13,1+n14)*rat(n11,1) +Z(n1.n2.n3.n4.n5.n6.-1+n7.-1+n8.n9.n10.n11.n12.1+n13.1+n14)*rat(-2*n13.1) +Z(n1,n2,n3,n4,n5,n6,-1+n7,n8,n9,-1+n10,1+n11,n12,n13,1+n14)*rat(n11,1) +Z(n1.n2.n3.n4.n5.n6.-1+n7.n8.n9.n10.n11.-1+n12.n13.2+n14)*rat(1+n14.1) +Z(n1,n2,n3,n4,n5,n6,-1+n7,n8,n9,n10,n11,n12,1+n13,1+n14)*rat(n13,1) +Z(n1,n2,n3,n4,n5,n6,-1+n7,n8,n9,n10,n11,n12,n13,1+n14)*rat(-2*ep-2*n4-1,1) +Z(n1,n2,n3,n4,n5,n6,1+n7,-1+n8,n9,n10,n11,n12,n13,1+n14)*rat(-n7,1) +Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,-1+n9,n10,n11,n12,1+n13,1+n14)*rat(n13,1) +Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,-1+n9,n10,n11,n12,n13,2+n14)*rat(-2*n14-2,1) +Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,-1+n10,1+n11,n12,n13,1+n14)*rat(-n11,1) +Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,-1+n10,n11,1+n12,n13,1+n14)*rat(-2*n12,1) +Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,-1+n10,n11,n12,n13,2+n14)*rat(-2*n14-2,1) +Z(n1.n2.n3.n4.n5.n6.n7.-1+n8.n9.1+n10.n11.n12.n13.1+n14)*rat(2*n10.1)

+Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,-1+n11,n12,1+n13,1+n14)*rat(-2*n13,1) +Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,1+n11,n12,n13,1+n14)*rat(n11,1) +Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,-1+n12,n13,2+n14)*rat(-n14-1,1) +Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,1+n12,n13,1+n14)*rat(-2*n12,1) +Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,n12,1+n13,1+n14)*rat(-3*n13,1) +Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,n12,n13,1+n14)*rat(10*ep+2*n1,1) +Z(n1,n2,n3,n4,n5,n6,n7,-1+n8,n9,n10,n11,n12,n13,2+n14)*rat(-2*n14-2,1) +Z(n1,n2,n3,n4,n5,n6,n7,n8,-1+n9,-1+n10,n11,1+n12,n13,1+n14)*rat(-n12,1) +Z(n1,n2,n3,n4,n5,n6,n7,n8,-1+n9,-1+n10,n11,n12,1+n13,1+n14)*rat(-n13,1) +Z(n1,n2,n3,n4,n5,n6,n7,n8,-1+n9,n10,-1+n11,n12,n13,2+n14)*rat(-n14-1,1) +Z(n1,n2,n3,n4,n5,n6,n7,n8,-1+n9,n10,n11,n12,1+n13,1+n14)*rat(-n13,1) +Z(n1,n2,n3,n4,n5,n6,n7,n8,-1+n9,n10,n11,n12,n13,1+n14)*rat(-4*ep-2*n1-n3,1) +Z(n1,n2,n3,n4,n5,n6,n7,n8,n9,-1+n10,n11,n12,n13,1+n14)*rat(-n5+1,1) +Z(n1,n2,n3,n4,n5,n6,n7,n8,n9,1+n10,-1+n11,n12,n13,1+n14)*rat(n10,1) +Z(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,-1+n11,n12,n13,1+n14)*rat(2*ep+n5+2*n8 +n9+n10+n11-5.1) +Z(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,1+n12,n13,n14)*rat(n12,1) +Z(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,-1+n13,1+n14)*rat(-2*ep-n5-2*n8

+Z(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,-1+n13,1+n14)*rat(-2*ep-n5-2*n8 -n9-n11-n14+3,1)

+Z(n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,1+n14)*rat(2*ep+n2+n7+ 2*n8+n9+n11+n14-4,1)

);

First results and benchmarks

- Reproduced 4-loop QCD β -function [Ritbergen, Vermaseren, Larin '97; Czakon '04]
- All ξ and ϵ 4-loop solution for QCD propagators and vertices <code>[new!]</code>

$$\begin{array}{c|c} & \beta_3 \text{ no gauge} & 10 \text{ minutes} \\ & \beta_3 \text{ 1 gauge} & 38 \text{ minutes} \\ & \beta_3 \text{ all gauge} & 8.5 \text{ hours} \\ & \text{no1}(2,2,2,2,2,2,2,2,2,2,-1,-1,-1) & 42 \text{ minutes} \\ \end{array}$$

Table: Benchmark on 24 core machine

4-loop splitting functions

- Can we calculate the 4-loop corrections to the PDF evolution?
- Calculate Mellin moments N for as many N as possible

Four loops

Five loops

- Each $N \rightarrow N + 2$ increases weight by 4
- 4-loop time: more than 1000 times 3-loop time

$$\gamma_{ij} = -P_{ij} = \sum_{n} \left(\frac{\alpha_s}{4\pi}\right)^n P_{ij}^{(n-1)} \quad i, j = q, g$$

Non-singlet (NS): combinations of γ_{qq}

Four	loops
E 1	La sura a

Parametric reductions Splitting functions

N3LO corrections to $\gamma_{\rm NS}$

N = 2, 3, 4 in agreement with [Baikov, Chetyrkin '06, Velizhanin '13, '14]
 Not enough moments yet to improve Padé of γ⁽³⁾_{cusp}

Parametric reductions Splitting functions

Example result

$$\begin{split} \gamma_{gg}^{(3)}(N=4) &= C_A^4 \left(\frac{1502628149}{3375000} + \frac{1146397}{11250} \zeta_3 - \frac{504}{5} \zeta_5 \right) + \frac{d_A^{abcd}}{n_a} \left(\frac{21623}{150} \right. \\ &+ \frac{15596}{15} \zeta_3 - \frac{6048}{5} \zeta_5 \right) - n_f C_A^3 \left(\frac{20580892841}{72900000} + \frac{12550223}{22500} \zeta_3 - \frac{8613}{25} \zeta_4 - \frac{4316}{27} \zeta_5 \right) \\ &+ n_f \frac{d_R^{abcd}}{n_a} \left(\frac{160091}{675} + \frac{80072}{225} \zeta_3 - \frac{48016}{45} \zeta_5 \right) - n_f C_A^2 C_F \left(\frac{4212122951}{41006250} \right) \\ &- \frac{1170784}{5625} \zeta_3 + \frac{418198}{1125} \zeta_4 - \frac{17636}{45} \zeta_5 \right) + n_f C_A C_F^2 \left(\frac{1913110089023}{2624400000} + \frac{39313783}{101250} \zeta_3 \right) \\ &+ \frac{26741}{750} \zeta_4 - \frac{3082}{5} \zeta_5 \right) + n_f C_F^3 \left(\frac{34764568601}{2099520000} - \frac{958343}{40500} \zeta_3 - \frac{18997}{2250} \zeta_4 + \frac{908}{45} \zeta_5 \right) \\ &- n_f^2 C_A^2 \left(\frac{3250393649}{218700000} - \frac{2969291}{20250} \zeta_3 + \frac{1566}{25} \zeta_4 + \frac{1276}{135} \zeta_5 \right) - n_f^2 C_F^2 \left(\frac{275622924731}{26244000000} \right) \\ &- \frac{253369}{10125} \zeta_3 + \frac{1078}{225} \zeta_4 \right) + n_f^2 C_A C_F \left(\frac{136020246173}{3280500000} - \frac{1672751}{10125} \zeta_3 + \frac{15172}{225} \zeta_4 \right) \\ &+ n_f^2 \frac{d_R^{abcd}}{n_a} \left(\frac{75788}{675} + \frac{3008}{15} \zeta_3 - \frac{20416}{45} \zeta_5 \right) + n_f^3 C_F \left(\frac{1780699}{24300000} - \frac{484}{675} \zeta_3 \right) \\ &- n_f^3 C_A \left(\frac{20440457}{21870000} - \frac{1888}{405} \zeta_3 \right) \end{split}$$

20

All 3-loop graphs (with insertion on gluon line) for n_f^2 in γ_{qq} :

- Simple topologies for forcer \rightarrow high moments
- Analytic form in *N* reconstructed with LLL-method [Velizhanin '12; Moch,Vermaseren,Vogt '14]
- Recent success: n_f^3 for γ_{qg} required N = 44
- Singlet splitting function matrix is now known at leading n_f [new; Davies,RUVV]

Four	loops	Para
Five	loops	Split

Parametric reductions Splitting functions

Quark cusp anomalous dimension

Large n_c contribution example:

$$\begin{split} \gamma_{\rm ns}^{(3)}(N)|_{\mathcal{C}_{F}\eta_{\rm c}n_{f}^{2}} &= \frac{127}{18} + \frac{1}{81} \Big(\frac{20681}{2} \, \eta + 2119 \, S_{1} - 2275 \, \eta^{2} - 20460 \, D_{1}^{2} + 3392 \, S_{1} \eta \\ &- 5036 \, S_{2} \Big) + \frac{4}{81} \Big(118 \, \eta^{3} - 886 \, D_{1}^{3} - 914 \, S_{1} \eta^{2} - 848 \, S_{1} D_{1}^{2} - 152 \, S_{1,2} - 416 \, S_{2} \eta \\ &- 152 \, S_{2,1} + 1148 \, S_{3} \Big) + \frac{8}{27} \Big(-57 \, D_{1}^{4} + 18 \, S_{1} \eta^{3} - 24 \, S_{1} D_{1}^{3} + 2 \, S_{2} \eta^{2} + 128 \, S_{2} D_{1}^{2} \\ &- 8 \, S_{3} \eta + 40 \, S_{1,3} + 80 \, S_{2,2} + 120 \, S_{3,1} - 159 \, S_{4} \Big) + \frac{8}{9} \Big(-6 \, \eta^{5} - 12 \, D_{1}^{5} + 10 \, S_{1} \eta^{4} \\ &- 24 \, S_{1} D_{1}^{4} + 8 \, S_{2} \eta^{3} + 4 \, S_{3} \eta^{2} - 8 \, S_{3} D_{1}^{2} + 4 \, S_{3,1} \eta - 8 \, S_{1,3,1} + 4 \, S_{1,4} - 8 \, S_{2,3} \\ &- 16 \, S_{3,2} - 2 \, S_{4} \eta - 20 \, S_{4,1} + 24 \, S_{5} \Big) + \text{ much simpler } \zeta_{3}, \zeta_{4} \text{ terms} \end{split}$$

From $\ln N$ coefficient in large-N limit:

$$\begin{split} \gamma_{\text{cusp}}^{(3)} &= \ldots + C_F C_A n_f^2 \left(\frac{923}{81} - \frac{608}{81} \zeta_2 + \frac{2240}{27} \zeta_3 - \frac{112}{3} \zeta_4 \right) \\ &+ C_F^2 n_f^2 \left(\frac{2392}{81} - \frac{640}{9} \zeta_3 + 32 \zeta_4 \right) - C_F n_f^3 \left(\frac{32}{81} - \frac{64}{27} \zeta_3 \right) \end{split}$$

- Can we go to five loops?
- Recompute 5-loop QCD β -function [Baikov, Chetyrkin, Kühn '16] with general colour group and gauge? [see also:

Luthe, Maier, Marquard, Schröder '16]

- 5-loop Forcer is hard:
 - Unknown master integrals
 - More than 200 manual reductions!

- We are interested in anomalous dimensions
- Thus, we only need the UV pole part
- Can we IR rearrange to create a *carpet* diagram?

Figure: The graphs have the same UV poles

- In general, this creates IR divergences
- Subtract UV and IR all using R^* [Chetyrkin,Smirnov,Larin,...]
- This involves carefully identifying and subtracting all counter-terms
- *R** has its own problems: commutativity issues, high-rank tensor reductions, . . .

 R^* operation

Subdivergences

UV subdiagrams:

 $\left\{\{\emptyset\},\{-,\cdot\},\{-,,\cdot\},\{-,,\cdot\},\{-,,\cdot\},\{-,,\cdot\},\{-,,\cdot\},\{-,,\cdot\},\{-,,\cdot\},\{-,$

 R^* operation

Subdivergences

UV subdiagrams:

IR subdiagrams:

 $\left\{ \{\emptyset\}, \{ \stackrel{\bigcirc}{\stackrel{\bigcirc}{\bullet}} \}, \{ \stackrel{\frown}{\bullet \bullet \bullet \bullet} \} \right\}$

 R^* operation

Superficial UV divergence

 ϕ^4 -Theories

Pole part:
$$K(\frac{1}{\epsilon} + 1 + \epsilon) = \frac{1}{\epsilon}$$

 $K\bar{R}^*\left(\longrightarrow\right) = K\left(\longrightarrow\right) - K\left(\longrightarrow\right) + K\underline{R}^*\left(\frac{0}{\epsilon}\right)K\left(\longrightarrow\right) + K\underline{R}^*\left(\frac{0}{\epsilon}\right)K\left(\longrightarrow\right) + K\underline{R}^*\left(\longrightarrow\right) + K\underline{R}^*\left(\longrightarrow\right)K\left(\longrightarrow\right)$
see Critical Properties of
 ϕ^4 -Theories by Kleinert and
Schulte for an introduction

- Very fast four-loop reductions beyond the scope of Laporta methods
- Calculated Mellin moments, including all-N generalizations
- Extensions to five loop is difficult, but possible
- R^* of interest for 4-loop high N or 5-loop splitting functions

 R^* operation

Acknowledgements

This work is supported by the ERC Advanced Grant no. 320651, <code>"HEPGAME"</code>