Dispersion property for Schrodinger equations J

Liviu Ignat
Institute of Mathematics of the Romanian Academy

Buenos Aires, April 26th, 2016

Liviu Ignat (IMAR) Dispersive properties 1/55



Outline

@ Introduction

© Discrete Schrédinger equations

© Schrodinger equation on trees

Liviu Ignat (IMAR) Dispersive properties



Outline

@ Introduction

Liviu Ignat (IMAR) Dispersive properties 3/55



Introduction

Linear Schrodinger equation

{zut( ,T) + Uge(t,2) =0, teR,z€R
(0,z) = ¢(x), v € R.

© Qualitative properties of the solutions
@ Decay of the solutions

© Conservation of some quantities

© Numerical approximations

© The same equation on trees, graphs

@ Discrete models
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Introduction

Fourier Transform

Basic properties

o
() :/Re_%”gu(:v)dx

(2]

wlz) = | ¥

(@) = [ e¥mae)ae

o
a(€)|2de = w(z)|?dx
[ ta©Pds = [ uto)Pa

o

()] < /R u(z) | da
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Introduction

Using Fourier transform we get

at, €) = e MmO (€)

and
u(t,z) = (K¢ x 9)(2),
where
i
K =
@) = Gz
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Introduction

Two important properties

Conservation of the L?(R)-norm

uta: 2de = ut§ 2de = df 2dx
90 90
/|ut,:L‘ 2d$:2§R/utt,xut,x )dx =0

Dispersive property

uta)| < [ 1Ktz = plleldy < 75 [ lowlds
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Introduction

Nonlinear problems

Nonlinear problems are solved by using fixed point arguments on the
variation of constants formulation of the PDE:

ur(t) = Au(t) + f(u(t)), t >0, u(0) = up.

t
u(t) = ety —|—/ A9 f(u(s))ds.
0

Assuming f : H — H is locally Lipschitz, allows proving local existence
and uniqueness in

we C(0,T); H)

Ex: H=H'R), f(u) = |ul?u

But, often in applications, f : H — H is not locally Lipshitz.
For instance H = L?(R) and f(u) = |u[Pu, with p > 0.
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Introduction

Then, one needs to discover other properties of the underlying linear
equation (smoothing, dispersion): If et € X, then look for solutions of
the nonlinear problem in

C([0,T; H)n X.
One then needs to investigate whether
t
u — ey —|—/ A=) f(u(s))ds
0

is a contraction in C'([0,7]; H) N X.

Typically in applications X = L9(0,7; L"(R)). This allows enlarging the
class of solvable nonlinear PDE in a significant way.
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Introduction

Linear Schrodinger equation

iug+ Au=0,z € R, t #0,
u(0,z) = ¢(z), v € R,

Conservation of the L2-norm

A
le " el 2(R) = HSOHLz(R)

Dispersive estimate

1
€20 oo ) = |1 Kt * 0| oo (ry < W“‘PHD(R)

Interpolation

S I

le* 20l 1w gy el p e (1,2 @
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Introduction

Space time estimates

The admissible pairs

Strichartz estimates for admissible pairs (g, r)
1SC)ellaw, rryy < Cla; )¢l L2 m)

Local Smoothing effect

sup / 18, 12(e2 p)2dt < Cllll2a
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Introduction

Nonlinear Schrodinger Equation

iug + Au = |ufPu, x e R, t #0
u(0,z) = p(z), z € R

For initial data in L?(R), Tsutsumi '87 proved the global existence and

uniqueness for p < 4
ue C(R, L*(R))N LY (R, L"(R))
Proof : Banach’s fix point argument in balls of

C([0, 7], L*(R)) N L([0,T], L"(R))
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Introduction

A first numerical scheme for NSE

d h
Pl + Apu® = |uPul, t+£0,

dt
u"(0) = ¢"

Ujqp1 — 2U; + Uj—1
(Apu); = =S
Questions

e Does u" converge to the solution of NSE?

o Is u" uniformly bounded in LY (R,I"(hZ%))?

@ Local Smoothing ?
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Introduction

A conservative scheme for LSE

h

In the Fourier space the solution @" can be written as

@'(t,6) = O ), e [T 7],

pr(€) = %sin2 (?) .

where
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Introduction

The two symbols in dimension one

1000 T T T T T T T T T
900 Continuous Case 4
ey=r 2
pE)=¢
800

7001

600 -
Semidiscrete Case

P, (&= sin(E h /2)

e Lack of uniform I! — [*°: ¢ = +7/2h
@ Lack of uniform local smoothing effect: £ = £7/h
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Introduction

Lemma

(Van der Corput) Suppose v is real-valued and smooth in (a,b), and that
[ 5)(2)| > 1 for all z € (a,b). Then

b .
/ M@ gy

h
6" (8) |10 (nz) < 1 N 1 -
[l O) 31 nzy ~ /2 (th)Y/3

< CkA_l/k

In dimension one:
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Introduction

Various remedies have been proposed L. and E. Zuazua (2003-2010)

o Filtering the high frequencies, Artificial numerical viscosity, Two-grid
methods

Error estimates for rough initial data

Wave packet analysis, Wigner measure approach by A. Marica and E.
Zuazua

@ KdV by Corentin Audiard

@ Discrete NLS with long-range lattice interactions by G. Staffilani
o Frequency saturation in NSE by Remi Carles,

@ etc...
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Outline

© Discrete Schrédinger equations
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Discrete Schrodinger equations

Discrete Schrodinger equations

We consider
tus + Agqu =0, jEZ,t%O,

u(0) = .

where

(Adu)j = Uj+1 — 2u]‘ + Uj—1
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Discrete Schrodinger equations

Discrete Schrodinger equations

We consider
tus + Agqu =0, jEZ,t%O,

u(0) = .
where
(Adu)j = Uj+1 — 2u]‘ + Uj—1

Theorem (Stefanov 2005, LI & Zuazua 2005)
For any ¢ € I1(Z) the following holds

(@)@ < (O 2leln

where (t) =t + 1.
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Discrete Schrodinger equations

A simple proof

u(t, j) = (K * 9)( Z Ki(j — k)o(k),
keZ
where

. a . 2 & ..

Kt(]) — / e—4ztsm 561]$d£'
—T

It remains to prove that

[Ke()l < 15
Apply Van der Corput and the fact that ¢ = 4 sin? % + ij& /4t satisfies

W7+ " = C > 0.

20 / 55
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DLSE with Dirichlet boundary condition

We consider the following equation

iug(t, 7) + (Aqu)(t,7) =0, 5>1,
u(t,0) =0, (3)
u(07j) = (P(j)> Jj= 1L
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DLSE with Dirichlet boundary condition

We consider the following equation

iug(t, 7) + (Aqu)(t,j) =0, j>1,
u(t,0) =0,
U(O,j) = (P(j)> Jj= 1L

-2 1 0 0 0 O
1 -2 1 0 0 0

A= o 1 -2 1 0 O
o 0 .. 0
0 0 0
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Discrete Schrodinger equations

Theorem

For any o € I2(Z%) there exists a unique solution u € C([0,00),12(Z7))
of problem (3) given by the following formula

u(t,§) = (Ki(G = k) = K (G + k)e(k), > 1.
k>1

Moreover

[u(®)llie z+y < 3l z+)-

Proof: Use odd extension of the function u to reduce the DLSE on the
whole Z.
u(t,z) = —u(t,—x),x <0

satisfies
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Y e e T N G o |
DLSE with Neumann boundary conditions

We consider the system

iu(j) + (Aqu)(j) =0 j > 1,
u(t,0) = u(t, 1), t>0, (4)
u(0,5) = »(j), j>1

In the matrix formulation we have ¢U; + AU = 0 where

-1 1 O 0
1 0
0

o O O
o O o o
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Discrete Schrodinger equations

Theorem

For any ¢ € I2(Z%) there exists a unique solution u € C([0,00),12(Z7))
of problem (4) given by the following formula

u(t,j+1) =Y (Ki(k—j = 1)+ Ky(k + j)) (k).
k>1

Moreover

[u(®)llie z+y < 3l z+)-

Proof: Use the even extension of u:

u(t,z) = u(t,—z),z <0
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Coupled DLSE

The equation we analyze is the following

iug(j) + (Aqu)(j) =0 j< -1,
ive(j) + (Aqu)(j) =0 Jj=>1,
u(t,0) = v(t,0), t>0, 5)
w(t.—1) — uft, 0) = v(t,0) — v(t,1), ¢ >0 (
\ U(O,j):gp(j), j=> 1L

Theorem

For any @ € I2(Z*) there exist a unique solution (u,v) € C([0,00,12(Z*))
of equation (5) which satisfies the dispersive estimate

1C, 0) (D) 2y < et + 1) el o) (6)
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A simple proof

Define
N () Ful(=g) . : ] )
S(j) = ()2()7J >0, D(j) = — 5 J > 0.
Observe that
(u,v) = ((§ = D)(=), S+ D)
Key point: D and S satisfy two DLSE on the half line with Dirichlet,
respectively Neumann, boundary condition:

iDy(j) + (AgD)(j) =0 j =1,
D(t,0) =0, (7)
{Dm,j)“""');‘”, i1
and
iS1(j) + (AaS)(j) =0 j =1,
S(t,0) = S(t,1), t>0, (8).
S(0,5) = 2+ sO( ellte(=d) >, @
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Discrete Schrodinger equations

Matrix formulation

Set U = (u,v)T where u = (u(j))j<—1 and v = (v(j));>1. It turns out
that U solves the following system

iU+ AU =0, t>0,

(9)
where the operator A is given by

i e .. .00 0 0 O
0o 1 -2 1 0O 0 0 O
4—| 00 1 -3 5 0 00
o0 0 3 -2 1 00
0 0 0 0 1 -2 1 0

0 0 0 0 0 .

@)
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Open Problem

How we can obtain the [ — [* property directly from the properties of the
operator A?

Remarks: A is not a diagonal operator, so we cannot use the Fourier
analysis to obtain a symbol for A and to use oscillatory integrals
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Discrete Schrodinger equations

A can be decomposed as A = Ay + B where

0 1
0 0
A= o g
0 0
0 O
and
0 O
0 0
B= 0 O
0 O
0 O

.. 0 0
-2 1 0
1 -2 1
0 1 -2
0O 0 1
0 0 0
.. 0 0
0 O 0
R
=
0 O 0
0 O 0

o O O O O

_ o O O

The solution of (9) is given by U (t) = e(Aat+B),
dispersive properties of ¢®*2¢ and some properties of B in order to prove &

the l1 [ estimate for U?

Dispersive properties

_— o O O O
OO O OO

o O O O O
o O O O O

How we can use the
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Discrete Schrodinger equations

DLSE with " non-constant coefficients”

The model (D. Stan, L.I., JFAA 2011)

(i) + by 2 (Agu)(j) = 0 j<-L
() + by *(Aqu)(j) = 0 j>1,
(t 0) = v(t,0), t >0,
( ( 1)* u(t,0)) = by *(v(t,0) — v(t,1)), t>0

Question: [|(u, v)(#) oo < (1 + [t ™l (2
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Matrix formulation

U = (u(j)) 0 satisfies iU; + AU = 0 where A is given by

0 0 0 0 0
0 by% —2b2 b2 0 0 0 0
-2 —2 1 1
1 1 — —
0 0 0 0 by —2b;% b;% 0
0 0 0 0 0 .

No chance to use Fourier transform, sums, etc... unless we answer to the
previous open problem.
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Use of the resolvent

Theorem

For any by and by positive the spectrum of the operator A satisfies

o(A) C I = [—4max{b;? by2},0].

(10)

For any w € I define

R*(w) = lif(f]l R(w =+ ie).

We can prove that

Then 1
eitd = 1 / TR () — R (w)]dw
A% I
Liviu Ignat (IMAR) Dispersive properties
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Discrete Schrodinger equations

Big Problem: computing the resolvent

Lemma

Let \ € C\ [~4max{b;?, by 2},0]. Any solution of the equation
(A= XI)f = g is given by

|1
) —Ts || Ikl
) =—= - > rylg(k) + ) (11)
b22(1 —7“2) +b12(1 _Tl) |:kEI2 ? kely }
b? . .
5 NT R iRy ), e T,
p— > (r r )g(k), J

kel

where rs, s € {1,2} is the unique solution with |rs| < 1 of the equation

7“3 —2rs+1= )\bgrs.
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A small part of the proof

Let assume by < by and take I = [—4b1_2,0]. "Essentially” we have to
prove that

| / ¢y (w)ra(w)] < CJt1/3
I

uniformly on j and k, where

r2 —2rs+1 = wblry, s € {1,2}.
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A small part of the proof

Let assume by < by and take I = [—4b1_2,0]. "Essentially” we have to
prove that

| [ et < ci e
I
uniformly on j and k, where
r2 —2rs+1 = wblry, s € {1,2}.
On I, 1y = €1(“) and ry = €?2(“) and we have to prove that
’/eitweijﬁl(w)eikeg(w)dw| < C|t|71/3
I
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Discrete Schrodinger equations

With a change of variables w = 2b1_2((:059 — 1) it remains to prove the
following result

Lemma

Let a € (0,1]. There exists a positive constant C'(a) such that the
following

’/ 6it(2cos9+2zarcsin(asing))eityeSin9d9 SC(Q)(‘H—Fl)il/S (12)
0

holds for any real numbers y, z and t.

Obs: For z = 0 the estimate appears in the case of simpler DLSE.
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Discrete Schrodinger equations

Oscillatory integrals

Lemma (Van der Corput)

Suppose 1) is real-valued and smooth in I, and that [¢)*)(z)| > 1 for all

xz € I. Then

/ N b()dr| < x| e + / 8.

I

We need to use two or three derivatives of the phase function

1q(0) = 2cos 0 + yb + z arcsin(a sin g)

Liviu Ignat (IMAR) Dispersive properties
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Discrete Schrodinger equations

Oscillatory integrals

Lemma (Van der Corput)

Suppose 1) is real-valued and smooth in I, and that [¢)*)(z)| > 1 for all

xz € I. Then

< A VRl ey + / &),

/eiwmd)(ac)dx

I

We need to use two or three derivatives of the phase function

1q(0) = 2cos 0 + yb + z arcsin(a sin g)

But there are cases when the above Lemma is not sufficient

Liviu Ignat (IMAR) Dispersive properties
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Discrete Schrodinger equations

Refinements of Van der Corput’'s Lemma

Lemma (Kenig, Ponce, Vega 91)
The following

b .
y/eWW@*@wwoﬁﬂmo&|

b
S%wlﬂwwmm@+/Wd@ua-

holds for all real numbers x and t.

@

37 /55
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Discrete Schrodinger equations

Refinements of Van der Corput’'s Lemma

Lemma (Kenig, Ponce, Vega 91)
The following

b .
y/eWW@*OWN@P”mo&|

b
S%wlﬂwwmw@+/Wd@wa-

holds for all real numbers x and t.

But there are cases when the above Lemma is still not sufficient

Liviu Ignat (IMAR) Dispersive properties
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Discrete Schrodinger equations

A new Lemma

Lemma (D. Stan, LI, JFAA 2011)

Assuming that at the critical points we have

(&) ~E%a>2

then
I(z,t) = ‘ / GO0 5" ()3 de | < et
Q

Liviu Ignat (IMAR) Dispersive properties
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Discrete Schrodinger equations

A new Lemma

Lemma (D. Stan, LI, JFAA 2011)

Assuming that at the critical points we have
¢(€) ~ a2

then
I(z,t) = ‘ / GO0 5" ()3 de | < et
Q

Finally apply careful Van der Corput and KpV with £k =2 or k = 3 and
even brute force
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Discrete Schrodinger equations

Some Open Problems/Comments

I. Give sufficient conditions for a symmetric matrix A with few diagonals
such that for the equation iUy + AU = 0 we can prove similar decay
properties, even with other type of decay: =14 etc.. (Work in progress
by E/ Paraicu)

Il. Coupling more than two equations (~ included in C. Gavrus master
thesis/SNSB)

[1l. Discrete potentials, etc...
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Outline

© Schrodinger equation on trees
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Schroédinger equation on trees

Schrodinger equation on trees (or network trees)

O12

€122

Figure: A tree with the third generation formed by infinite edges a
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n on trees

Oy,
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Schroédinger equation on trees

iw(t,x) + Aru(t,z) =0, ze€Tl,t#0,

u(0) = uy, xel.
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Schroédinger equation on trees

iw(t,x) + Aru(t,z) =0, ze€Tl,t#0,
(13)
u(0) = uy, xel.
(o) 4l (t2) =0, x e (0,1),1< [ <n,
iul(t,z) +uly(t,z) =0, z € (0,00),|a]=n+1,
u(t,1) = u*(t,0), fe{l2h1<al<n,
ul(0, 1) = u*(0,1), (14)
2 RN—
ug(t,1) =Y ug’(t,0), 1<al<n,
f=1
ug (0,1) +u3(0,) = 0,
| u®(0,2) = uff (x).
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Schroédinger equation on trees

For regular trees we have similar dispersive estimates.
Main Tool: A result on LSE with discontinuous coefficients

Theorem (Banica, SIAM JMA 2003)

Consider a partition of the real axis —co =2 < 21 < +++ < Tp41 = 0O
and a step function o(x) = o; for x € (x;,x;1+1), where o; are positive
numbers.

The solution u of the Schrédinger equation

iug(t,x) + (o(z)uyg)z(t,z) =0, forxz e R,t#0,
U(O,il?) = Uo(QT), T e R?

satisfies the dispersion inequality

u(t, ) poo(m) < C|t|_1/2HUOHL1(R)v t #0.
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The star shaped tree

W{(ta z) +ule(t,x) =0, x€(0,00),1<j<n,

ul(t,0) = u?(t,0) = - - = u"(t,0)
(15)
ul(t,0) +u2(t,0) + - +u?(t,0) =0,

uw? (0, 7) = u)(z).

\

Making sums we can reduce the problem to the case of the half-line +
Dirichlet or Neumann boundary conditions.
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Schroédinger equation on trees

Idea of the proof in the case of regular trees

Look to the tree in a different way

The functions situated above each interval are defined on that interval, for
example u! and u? are defined on I, etc... where

(k—1,k) if 1<k<n,
I, =
(n,o0) if E=n+1. @&
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Schroédinger equation on trees

In order to obtain L' — L™ estimates we need to introduce some averages

Y udP
ZQZ% on Mgt 0< (B <n+1—]af

Liviu Ignat (IMAR) Dispersive properties
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The first generation of Z's

Z(t,x) = (—Z(t,—x), Z*(t, v)) satisfies

p

Using that Z satisfies
1Z()|| oo r) < |t|71/2HZ(O)HL1(R)

we have the same information about u! and u?:
n+1

s 0=y IO man} < 723 5 )

Liviu Ignat (IMAR) Dispersive properties

iZy+ Zyy =0 z e R\{k,1< |k <n}
Z(t k—) = Z(t, k+), 1< |kl <n
Zo(t, k=) = 2Z,(t, k+), 1< |kl <n

| 2(0,2) = Zo(x), @ eR\{k,1< [k <n).




Schroédinger equation on trees

Next generations: induction
Question: What about a general tree? another ideas ...
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Schroédinger equation on trees

The general case

Theorem (V. Banica, L.I, JMP 2011)

The solution of the linear Schrodinger equation on a tree is of the form

. i8a(zy)
e Srug Z i T uo(y) dy. (17)
I>\

AER

with gx(z,y) € R, I € {Ie}ecr, D \cr lan] < 0o, and it satisfies the
dispersion inequality

C
\/m”uOHLl(F)v t#0. (18)

e ug|| poo (ry <

v
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Schroédinger equation on trees

Ingredients for the proof

1. If Ryf = (—Ar + w?I)~'f then wR,f(x) can be analytically continued
in a region containing the imaginary axis
2. A spectral calculus argument to write

it A > itr2 dr
e Tug(z) = / """ TRirup(x)—.
™

—00

3. The representation of the resolvent

TRi;up(z ZbAem“(x / o(y)e™P Y dy, (19)

AER
with ¢A($)76A eR, I, e {Ie}eeE and Z,BGJR |b)\| < 00.
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Main steps

1.0n each edge parametrized by I,
1
R, f(x) = ce®® + ce " + 2/ f(y)e > Vdy, ze1,.
w I,

2. The continuity of R,f and of transmission of J, R, f at the vertices of

the tree give the system of equations on the coefficients c's
3.

N(I)

ni :I:w<I>A(1’)/ f twy 2

Rt = g 2 W)=y (20)
1

— | f —wlz—yl g 21

+ 5z [ twe =y, (1)
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Schroédinger equation on trees

4. Induction on the number of the vertices to prove that

der, er > 0, |det Dr(w)| > cr, Vw € C, |[Rw| < er.

5. Results on almost periodic functions to write

d
det Dr(i7) DF (i) Z ,\e
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Schroédinger equation on trees

Some Open Problems/Comments

o

©

©0 06060

Other coupling conditions A(v)f(v) + B(v)f'(v) = 0 where

@ the joint matrix (A(v), B(v)) has maximal rank, i.e. d(v),

@ A(w)B(v)T = B(v)A(v)T.
LI and Banica, Analysis of PDE 2014, §-coupling: ) (u;), = du,
A+ N apd(x — )
clarify if the dispersion is possible only on trees or there are graphs
(with some of the edges infinite) with suitable couplings where the
dispersion is still true - some work in progress by A. Grecu
Some applications to control/stabilization on trees/networks
Discrete Schrodinger equations on trees, graphs - C. Gavrus
some magnetic operators: in the presence of an external magnetic
field the effect of the topology of the graph becomes more pronounced
Strichartz estimates for “exotic” graphs
LSE with BV coefficients: N. Beli, with a lot of analytic number
theory, multivariable polynomials, ODE, etc...

@
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Schrédinger equation on trees

Exotic structures

—10, —1
-1 00,

e Dirac equation iu; = Hu + f(u) where H =
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THANKS for your attention !!!
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