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Simple Nonlocal Model

• u(x, t) density of a single population at the point x at time t,

• J(x− y) probability distribution of jumping from location y to
location x.

• Then the rate at which individuals are arriving to position x from
any other place is given∫

RN
J(x− y)u(y, t) dy = (J ∗ u)(x, t)

• Rate at which they are leaving location x to travel to any other site,∫
RN

J(y− x)u(x, t) dy = u(x, t)
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Simple Nonlocal Model

ut = J ∗ u− u =

∫
RN

J(x− y)(u(y, t)− u(x, t)) dy

• Infinite speed of propagation
• Maximum principle
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Simple Nonlocal Model

ut = J ∗ u− u =

∫
RN

J(x− y)(u(y, t)− u(x, t)) dy

This equation shares many properties with the heat equation

ut = ∆u

• Infinite speed of propagation
• Maximum principle

However there are important differences between them. For instance,
non-local equation has no regularizing effect.
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Simple Nonlocal Model

ut = J ∗ u− u =

∫
RN

J(x− y)(u(y, t)− u(x, t)) dy

This equation shares many properties with the heat equation

ut = ∆u

• Infinite speed of propagation
• Maximum principle

In fact, if we consider Jε(x) = CJ
εN+2 J( x

ε), the solutions uε → u which is a
solution of the heat equation
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Nonlocal Neumann Model

• We can impose that the individuals only jump in a certain domain, ut =

∫
Ω

J(x− y)(u(y, t)− u(x, t)) dy in Ω× R+

u(x, 0) = u0(x) in Ω

• If we consider Jε the solution converges to the solution of
ut = ∆u in Ω× R+

∂u
∂ν = 0 in Ω× R+

u(x, 0) = u0(x) in Ω
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Nonlocal Dirichlet Model

• Assuming that individuals jumping outside of Ω die.
ut =

∫
RN

J(x− y)(u(y, t)− u(x, t)) dy in Ω× R+

u(x, t) = 0 in RN \ Ω× R+

u(x, 0) = u0(x) in Ω

• In this case, with Jε we converge to a solution of
ut = ∆u in Ω× R+

u = 0 in ∂Ω× R+

u(x, 0) = u0(x) in Ω
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Nonlocal p-Laplacian Operator

• A nonlocal version of the the p-laplacian operator

∆pu = ∇ · (|∇u|p−2∇u)

is given by

∆J
pu =

∫
RN

J(x− y)|u(y, t)− u(x, t|p−2(u(y, t)− u(x, t)) dy

• If we rescale the kernel in the Cauchy, Dirichlet and Neumann
problems then we converge to the corresponding local problems.
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Eigenavalue problem

• For the local p-laplacian it is well known that there exists λ1 > 0

λ1 = inf
W1,p

0 (Ω)

∫
Ω |∇u|p dx∫

Ω up dx

and the corresponding eigenfunction function φ1 > 0.

• However for the non-local version

λ1 = inf
u ∈ Lp(Ω)
u = 0 in RN \ Ω

1
2

∫
RN

∫
RN J(x− y)|u(y)− u(x)|p dxdy∫

Ω up dx

we only know that λ1 > 0. The existence of the corresponding
positive eigenfunction has not been shown, due to the lack of
compactness of the minimizer sequence.
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Our problem

We analyze some features of the blow-up phenomenon arising from
the non-local diffusion problem,

ut(x, t) = ∆J
pu + uq in Ω× (0,T),

u(x, t) = 0 in RN \ Ω× (0,T)
u(x, 0) = u0(x) in Ω.

• q ≥ 0, p ≥ 2
• Ω is a bounded smooth domain
• J : RN → R, J ∈ C∞0 (RN) is a nonnegative, bounded and

symmetric kernel (J(z) = J(−z)), such that
∫
RN J(z)dz = 1.

• u0(x), continuous, positive initial datum.
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Existence and uniqueness

We can rewrite the equation as

u(x, t) = u0(x) +

∫ t

0

∫
Ω

J(x− y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t)) dy dt

−
∫ t

0
|u(x, t)|p−2u(x, t)

∫
RN\Ω

J(x− y) dy dt +

∫ t

0
uq(x, t) dt
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J(x− y) dy dt +

∫ t

0
uq(x, t) dt

For u0 ∈ C(Ω) it is well defined in Xt0 = C([0, t0]; C(Ω)).

In fact, D : Xt0 → Xt0 , and for small t0 it is a strict contraction in a ball of
Xt0 .
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Existence and uniqueness

We have existence and uniqueness of solutions in the time interval
[0, t0].
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Existence and uniqueness

We have existence and uniqueness of solutions in the time interval
[0, t0].

If ‖u‖Xt0
<∞, taking as initial datum u(·, t0) ∈ C(Ω), it is possible to

extend the solution up to some interval [0, t1), for certain t1 > t0.
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Existence and uniqueness

We have existence and uniqueness of solutions in the time interval
[0, t0].

If ‖u‖Xt0
<∞, taking as initial datum u(·, t0) ∈ C(Ω), it is possible to

extend the solution up to some interval [0, t1), for certain t1 > t0.

Therefore, if T <∞ it holds that

lim sup
t↗T

‖u(·, t)‖L∞(Ω) = +∞.
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The energy functional

The energy functional associated to our problem is

H(v(t)) =
1
2p

∫
Ω

∫
Ω

J(x− y)|v(y, t)− v(x, t)|pdx dy

− 1
q + 1

∫
Ω
|v|qv(x, t) dx +

1
p

∫
Ω

∫
RN\Ω

J(x− y)|v|p−1v(x, t) dy dx.
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The energy functional

The energy functional associated to our problem is

H(v(t)) =
1
2p

∫
Ω

∫
Ω

J(x− y)|v(y, t)− v(x, t)|pdx dy

− 1
q + 1

∫
Ω
|v|qv(x, t) dx +

1
p

∫
Ω

∫
RN\Ω

J(x− y)|v|p−1v(x, t) dy dx.

Multiplying the equation by ut, it holds

d
dt

H(u(t)) = −
∫

Ω
(ut)

2(x, t) dx.

Thus H is non-increasing along the orbits.
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Blow-up criterium

Lemma

If q + 1 ≥ p and ∃t0 such that H(u(t0)) < 0. Then u blows up in finite
time.

Proof. Multiplying the equation by u, it holds

L′(u(t)) = −pH(u(t)) +

(
1− p

q + 1

)∫
Ω

uq+1 dx.

where
L(u(t)) =

1
2

∫
Ω

u2 dx
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Ω
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where
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2

∫
Ω

u2 dx

Assuming that q + 1 > p ≥ 2

L′(u(t)) ≥ C (L(u(t)))
q+1

2
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Blow-up criterium

In the case q + 1 = p > 2

L′(u(t)) = −pH(u(t)) > 0
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Blow-up criterium

In the case q + 1 = p > 2

L′(u(t)) = −pH(u(t)) > 0

On the other hand

(L′(u(t)))2 =

(
d
dt

(
1
2

∫
Ω

u2dx
))2

=

(∫
Ω

uutdx
)2

≤
∫

Ω
u2dx

∫
Ω

(ut)
2dx
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Blow-up criterium

In the case q + 1 = p > 2

L′(u(t)) = −pH(u(t)) > 0

(L′(u(t)))2 ≤ −2L(u(t))
d
dt

H(u(t)) =
2
p

L(u(t))L′′(u(t))
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Blow-up criterium

In the case q + 1 = p > 2

L′(u(t)) = −pH(u(t)) > 0

(L′(u(t)))2 ≤ −2L(u(t))
d
dt

H(u(t)) =
2
p

L(u(t))L′′(u(t))

By integration
L′(u(t)) ≥ C(L(u(t)))

p
2

In both cases (∫
Ω

u2(x) dx
) 1

2

≤ C(T − t)
−1
q+1 .
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Global existence criterium

Lemma

If q + 1 < p and u0 satisfies∫
RN

J(x− y)|u0(y)− u0(x)|p−2(u0(y)− u0(x)) dy + uq
0(x) ≥ 0,

(It ensures that ut ≥ 0), then the solution u is global.
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Global existence criterium

Lemma

If q + 1 < p and u0 satisfies∫
RN

J(x− y)|u0(y)− u0(x)|p−2(u0(y)− u0(x)) dy + uq
0(x) ≥ 0,

(It ensures that ut ≥ 0), then the solution u is global.

Proof. Assume that ∃ tn → T such that λn = ‖u(·, tn)‖∞ →∞ and scale
the solutions as follows

ωn(x, τ) = λ−1
n u(x, λ2−p

n τ + tn), for τ ∈

[
−λ

p−2
n tn
2

, 0

]
:= In
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Global existence criterium

Since ut ≥ 0 then (ωn)τ ≥ 0 and

0 ≤ u0(x)

λn
≤ ωn(x, τ) ≤ 1 = ‖ωn(·, 0)‖∞ = ω(xn, 0)

for all (x, τ) ∈ Ω× In and some xn ∈ Ω.

There exists a subsequence nk such that wnk converge in L∞-weak∗ to
ω∞, defined in Ω× (−∞, 0] and satisfying

0 ≤ ω∞ ≤ 1, ω∞(x∞, 0) = 1,

where x∞ is the limit of xnk .
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Global existence criterium

The scaled functions verify

(ωn)τ (x, τ) =

∫
Ω

J(x− y)|ωn(y, τ)− ωn(x, τ)|p−2(ωn(y, τ)− ωn(x, τ)) dy

−ωp−1
n (x, τ)

∫
RN\Ω

J(x− y) dy + λq−p+1
n ωq

n(x, τ),

In particular, at (x, τ) = (xn, 0)∫
Ω

J(xn − y)|ωn(y, 0)− 1|p−1 ≤ λq−p+1
n −

∫
RN\Ω

J(xn − y) dy.

By convexity of f (s) = |s− 1|p−1 and Fatou’s Lemma∫
Ω

J(x∞ − y)|ω∞(y, 0)− 1|p−1 dy ≤ −
∫
RN\Ω

J(x∞ − y) dy .
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Global existence criterium

This implies both, B1(x∞) ⊂ Ω and ω∞(x, 0) = 1 a.e. in B1(x∞)
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Global existence criterium

This implies both, B1(x∞) ⊂ Ω and ω∞(x, 0) = 1 a.e. in B1(x∞)

In terms of the function u it reads as

lim inf
tnk→T

u(x, tnk)

‖u(·, tnk)‖∞
= 1 , x ∈ B1(x∞).

Therefore, u(x, t) blows up a.e. in B1(x∞)
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Global existence criterium

On the other hand, we can rewrite the functional energy as

H(u(t)) =
1
2p

∫
Ω

∫
RN

J(x− y)|u(y, t)− u(x, t)|pdx dy

− 1
q + 1

∫
Ω

uq+1(x, t) dx
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Global existence criterium

On the other hand, we can rewrite the functional energy as

H(u(t)) =
1
2p

∫
Ω

∫
RN

J(x− y)|u(y, t)− u(x, t)|pdx dy

− 1
q + 1

∫
Ω

uq+1(x, t) dx

Then, using the following Poincaré inequality

There exists λ(J,Ω, p) > 0 such that

λ

∫
Ω
|u(x)|pdx ≤

∫
Ω

∫
RN

J(x− y)|u(y)− u(x)|pdy dx,

for all u ∈ Lp(Ω) with u = 0 outside of Ω
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Global existence criterium

H(u(t)) ≥ C1

∫
Ω
|u|p dx− C2

∫
Ω
|u|q+1 dx
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Global existence criterium

H(u(t)) ≥ C1

∫
Ω
|u|p dx− C2

∫
Ω
|u|q+1 dx

Since p > q + 1 we get
H(u(t))→∞
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Blow-up versus global existence

We consider the initial datum

u(x, 0) = uρ(x) = ρχΩ,

with the parameter ρ conveniently chosen depending on the case.

• Case q < p− 1. Note that the inequality∫
RN

J(x− y)|u0(y)− u0(x)|p−2(u0(y)− u0(x)) dy + uq
0(x) ≥ 0

reads as
ρq − ρp−1

∫
RN\Ω

J(x− y) dy ≥ 0 .

Taking ρ = 1 the last inequality holds and then u1 is global.

In the general case, for A > 1 the function

w(x, t) = Au1(x,Ap−2t) ,

is a global supersolution of our problem.
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0(x) ≥ 0

reads as
ρq − ρp−1

∫
RN\Ω

J(x− y) dy ≥ 0 .

Taking ρ = 1 the last inequality holds and then u1 is global.

In the general case, for A > 1 the function

w(x, t) = Au1(x,Ap−2t) ,

is a global supersolution of our problem.
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Blow-up versus global existence

Note that the energy functional for u0 takes the form

H(uρ) =
ρpµ(Ω)

p

∫
RN\Ω

J(x− y) dy− ρq+1µ(Ω)

q + 1

• Case q + 1 = p > 2, uρ(x, t) blows up for ρ > 0.

• Case q + 1 > p, uρ(x, t) blows up for ρ ≥
(

q+1
p

) 1
q+1−p .
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Blow-up versus global existence

Note that the energy functional for u0 takes the form

H(uρ) < µ(Ω)ρp
(

1
p
− ρq+1−p

q + 1

)
.

• Case q + 1 = p > 2, uρ(x, t) blows up for ρ > 0.

• Case q + 1 > p, uρ(x, t) blows up for ρ ≥
(

q+1
p

) 1
q+1−p .

If Ω is a thin domain, that is, for all x ∈ Ω̄,∫
RN\Ω

J(x− y)dy ≥ β > 0,

then small constant functions are stationary supersolutions. Thus,
we also have global solution in this range.
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Blow-up rates

Let us see that the diffusion term plays no role and the blow-up rate is
given by the ODE ut = uq.
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Blow-up rates

Let us see that the diffusion term plays no role and the blow-up rate is
given by the ODE ut = uq.

Theorem

Let q + 1 ≥ p > 2 and u be a solution that blows up at time T. Then

max
x∈Ω

u(x, t) ≥ Cq(T − t)−
1

q−1 , Cq =

(
1

q− 1

) 1
q−1

.
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Blow-up rates

Theorem

Let q + 1 > p ≥ 2 and u be a solution blowing up at time T. Then, there
exists a positive constant such that

max
x∈Ω

u(x, t) ≤ C(T − t)−
1

q−1 .

Proof. Adding and subtracting up−1, our equation can be written as
follows

ut(x, t) =

∫
RN

J(x− y)(|u(x, t)|p−2u(x, t)− |u(x, t)− u(y, t)|p−2(u(x, t)− u(y, t))) dy

+uq(x, t)− up−1(x, t) ,
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Blow-up rates

Theorem

Let q + 1 > p ≥ 2 and u be a solution blowing up at time T. Then, there
exists a positive constant such that

max
x∈Ω

u(x, t) ≤ C(T − t)−
1

q−1 .

Proof. Adding and subtracting up−1, our equation can be written as
follows

ut(x, t) =

∫
RN

J(x− y)(|u(x, t)|p−2u(x, t)− |u(x, t)− u(y, t)|p−2(u(x, t)− u(y, t))) dy

+uq(x, t)− up−1(x, t) ,

Since the function f (s) = |s|p−2s is increasing, the integral term is
positive.
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Blow-up rates

Therefore
ut(x, t) ≥ uq(x, t)− up−1(x, t)
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Blow-up rates

Therefore
ut(x, t) ≥ uq(x, t)− up−1(x, t)

Let x0 ∈ B(u). since q > p− 1 there exists t0 near T such that, such that
for t0 ≤ t < T it holds

ut(x0, t) ≥
1
2

uq(x0, t) .
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Blow-up rates

Therefore
ut(x, t) ≥ uq(x, t)− up−1(x, t)

Let x0 ∈ B(u). since q > p− 1 there exists t0 near T such that, such that
for t0 ≤ t < T it holds

ut(x0, t) ≥
1
2

uq(x0, t) .

By integration
u(x, t) ≤ C(T − t)

−1
q+1
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Blow-up rates

Theorem

Let q + 1 = p, 2 < p < 3 and u be a solution which blows up at time T.
Then there exists a positive constant C such that

max
x∈Ω

u(x, t) ≤ C(T − t)
−1

p−2 .

Proof. We rescale the solutions as follows

ω(x, s) = (T − t)
1

p−2 u(x, t), s = − log
(

T
T − t

)
,

Let x∗ ∈ Ω such that ω(x∗(s), s) = maxΩ ω(·, s)
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Blow-up rates

Theorem
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Blow-up rates

At this point the equation for ω reads

ωs(x∗, s) =

∫
RN

J(x− y)
[
|ω(x∗, s)|p−2ω(x∗, s)− |ω(x∗, s)− ω(y, s)|p−2(ω(x∗, s)− ω(y, s))

]
dy,

− 1
p−2ω(x∗, s)
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Blow-up rates

At this point the equation for ω reads

ωs(x∗, s) =

∫
RN

J(x− y)
[
|ω(x∗, s)|p−2ω(x∗, s)− |ω(x∗, s)− ω(y, s)|p−2(ω(x∗, s)− ω(y, s))

]
dy,

− 1
p−2ω(x∗, s)

We apply the Mean Value Theorem to the function f (z) = |z|p−2z to
obtain

ωs(x∗, s) = − 1
p− 2

ω(x∗, s) + (p− 1)

∫
RN

J(x∗ − y)|ξ|p−2ω(y, s) dy

for some ω(x∗, s)− ω(y, s) ≤ ξ ≤ ω(x∗, s).
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Blow-up rates

ωs(x∗, s) ≤ − 1
p− 2

ω(x∗, s) + (p− 1)ωp−2(x∗, s)
∫
RN

J(x∗ − y)ω(y, s) dy
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Blow-up rates

ωs(x∗, s) ≤
(

Cωp−3(x∗, s)− 1
p− 2

)
ω(x∗, s).
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Blow-up rates

ωs(x∗, s) ≤
(

Cωp−3(x∗, s)− 1
p− 2

)
ω(x∗, s).

Since p < 3, if ω is large it is increasing. So, ω is bounded.
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Blow-up sets

Teorema

Let q ≥ p and Ω = BR(0). If u(x, t) is radially symmetric and decreasing,
then B(u) = {0}.
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Blow-up sets

Teorema

Let q ≥ p and Ω = BR(0). If u(x, t) is radially symmetric and decreasing,
then B(u) = {0}.

Teorema

Let q + 1 = p and u be a solution which satisfies the upper blow-up rate
estimate

‖u(·, t)‖∞ ≤ C(T − t)
−1
p−2 .

Then u blows up in the whole domain.

Raúl Ferreira ICAS 2016 27



Blow-up sets

Teorema

Let q ≥ p and Ω = BR(0). If u(x, t) is radially symmetric and decreasing,
then B(u) = {0}.

Teorema

Let q + 1 = p and u be a solution which satisfies the upper blow-up rate
estimate

‖u(·, t)‖∞ ≤ C(T − t)
−1
p−2 .

Then u blows up in the whole domain.

Gap for p− 1 < q < p
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Blow-up sets

As before, we rescale the solutions as follows

ω(x, s) = (T − t)
1

q−1 u(x, t), s = − log
(

T
T − t

)
.

• q + 1 > p.

lim
s→∞

ω(x, s) =

{
C
0

• q + 1 > p. If ω(x, s)→ 0

ωs(x, s) ≤ Ce−
q+1−p

q−1 s − 1− ε
p− 2

ω(x, s)
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Blow-up sets

As before, we rescale the solutions as follows

ω(x, s) = (T − t)
1

q−1 u(x, t), s = − log
(

T
T − t

)
.

Then, ω is bounded and it satisfies

ωs(x, s) = e−
q+1−p

q−1 s
∫
RN

J(x− y)|ω(y, s)− ω(x, s)|p−2(ω(y, s)− ω(x, s)) dy

+ωq(x, s)− 1
p−2ω(x, s).
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Blow-up sets
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Raúl Ferreira ICAS 2016 28



Blow-up sets
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Blow-up sets

Then, ω is bounded and it satisfies
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Blow-up sets

Then, ω is bounded and it satisfies

ωs(x, s) = e−
q+1−p

q−1 s
∫
RN

J(x− y)|ω(y, s)− ω(x, s)|p−2(ω(y, s)− ω(x, s)) dy

+ωq(x, s)− 1
p−2ω(x, s).

• q + 1 > p.

lim
s→∞

ω(x, s) =

{
C
0

• q + 1 > p. If ω(x, s)→ 0

ωs(x, s) ≤ Ce−
q+1−p

q−1 s − 1− ε
p− 2

ω(x, s)

Then,

u(x, t) = e
1

q−1 s
ω(x, s) ≤

{
C q ≥ p

C e
p−q
q−1 s q < p
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The Neumann problem

Theorem

• If q > 1 any solution to (2) blows up, while if q ≤ 1 every solution is
global.

• Rates:

• If 1 < q then maxΩ u(·, t) ≥ Cq(T − t)−
1

q−1 .

• If 1 < q and q 6= p− 1, then maxΩ u(·, t) ≤ C(T − t)−
1

q−1 .
• If q = p− 1 and, either 2 < p < 3 or Ω is a thin domain, then

maxΩ u(·, t) ≤ C(T − t)−
1

q−1 (*).

• Sets : the flat solution z(t) = Cq(T − t)−
1

q−1 blows up globally.
However, there exists also single-point blow-up.
• If 1 < q < p− 1 then B(U) = Ω.
• Assuming (*). If 1 < q = p− 1 ,then B(U) = Ω.
• If q > p then we have single-point blow-up.
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