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Simple Nonlocal Model

* u(x,t) density of a single population at the point x at time ¢,
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Simple Nonlocal Model

u(x, t) density of a single population at the point x at time 7,

J(x — y) probability distribution of jumping from location y to
location x.

Then the rate at which individuals are arriving to position x from
any other place is given

[ =ty dy = (05wt

Rate at which they are leaving location x to travel to any other site,

/ J(y — x)u(x,t)dy = u(x,1)
RN
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Simple Nonlocal Model

u,:]*uu:/RNJ(xy)(u(y,t) —u(x,t))dy
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Simple Nonlocal Model
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u; = Au
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Simple Nonlocal Model

w=Jxu—u= / J(x —y)(u(y,t) — u(x,1))dy
]RN
This equation shares many properties with the heat equation

u; = Au

¢ Infinite speed of propagation
e Maximum principle

However there are important differences between them. For instance,
non-local equation has no regularizing effect.
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Simple Nonlocal Model

w=Jxu—u= / J(x —y)(u(y,t) — u(x,t))dy
RN
This equation shares many properties with the heat equation

u; = Au

In fact, if we consider J.(x) = ESiZJ(;—‘), the solutions u. — u which is a

solution of the heat equation
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Nonlocal Neumann Model

e We can impose that the individuals only jump in a certain domain,

u = /Qj(x —y)(u(y,t) —u(x,t))dy  inQ xRt
u(x,0) = up(x) in Q
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Nonlocal Neumann Model

e We can impose that the individuals only jump in a certain domain,

u = /Qj(x —y)(u(y,t) —u(x,t))dy  inQ xRt
u(x,0) = up(x) in Q

o |f we consider J. the solution converges to the solution of

u; = Au in Q xRT
Q-0 in Q x RY

u(x,0) = up(x) inQ
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Nonlocal Dirichlet Model

e Assuming that individuals jumping outside of Q die.

= /R S — )y 1) — u(r,0)dy I Q x R
u(x,t) = inRV\ Q x Rt
(x,0) = up(x) in Q
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Nonlocal Dirichlet Model

e Assuming that individuals jumping outside of Q die.

= /R I =)l 0) —u(r,0)dy  inQx R*
u(x,t) = inRV\ Q x Rt
(x,0) = up(x) in Q

¢ In this case, with J. we converge to a solution of

u; = Au in Q xRt
u=20 in 00 x RY
u(x,0) = up(x) inQ
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Nonlocal p-Laplacian Operator

¢ A nonlocal version of the the p-laplacian operator
Apu =V - (|Vul~*Vu)

is given by

M= [ =) ) = a0, s 1) dy
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Nonlocal p-Laplacian Operator

¢ A nonlocal version of the the p-laplacian operator
Apu =V - (|Vul~*Vu)
is given by
J. -2
A= [ 1= 3)lus.0) = ot u(r,0) = (1)

« If we rescale the kernel in the Cauchy, Dirichlet and Neumann
problems then we converge to the corresponding local problems.
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Eigenavalue problem

o For the local p-laplacian it is well known that there exists A; > 0

o Jo IVulP dx

Al =
W(; aI’(Q) fQ uP dx

and the corresponding eigenfunction function ¢; > 0.
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Eigenavalue problem

o For the local p-laplacian it is well known that there exists A; > 0

o fQ |VulP dx

Al =
W(; al’(Q) fQ upP d.x

and the corresponding eigenfunction function ¢; > 0.
e However for the non-local version

3 S S I (c = )|u(y) — u(x)|P dxdy

)\1 = inf
ue () Jo u? dx
u=0inRV\ Q

we only know that \; > 0. The existence of the corresponding
positive eigenfunction has not been shown, due to the lack of
compactness of the minimizer sequence.
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Our problem

We analyze some features of the blow-up phenomenon arising from
the non-local diffusion problem,

ur(x, 1) = AJu + uf inQ x (0,7),

u(x,t) = inRY\ Q x (0,7)

u(x,0) = up(x) in €.
©*q=>0,p=>2

) is a bounded smooth domain

J:RY - R, J € C°(R") is a nonnegative, bounded and
symmetric kernel (J(z) = J(—z)), such that [y J(z)dz = 1.

up(x), continuous, positive initial datum.
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Existence and uniqueness

We can rewrite the equation as
u(x, 1) = / / x—=y)|u(y, 1) — u(x, 1)~ 2( (y,t) —u(x,t))dydt

/|uxt|p xt)/ RS )dydt+/ou"(x,t)dt
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Existence and uniqueness

D) = uolx) + /O t /Q J(x = )y, 1) — ule, )P~ (uly, 1) — u(, 1)) dyds

t t
—/ lu(x, 1) [P~ u(x, t)/ J(x—y)dy dt+/ ul(x,t)dt
0 RM\Q 0
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Existence and uniqueness

u) = up(x t x—y)|u —u(x, )P (u —u(x
O = )+ [ [ I3l = )Pty ) )
_/0 (e, £) P~ 2u(x, 1) /RN\QJ(X—y) dydt—i—/o ul(x,t)dt

For up € C(Q) it is well defined in X,, = C([0, 15]; C(2)).
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Existence and uniqueness

200 = w()+ [ [ J= ) = P2 u00) — )y
/ lu(x, 1) [P~ 2u(x, t)/ \Qj(x— )dydt+/0 u? (x, t) dt
For up € C(Q) it is well defined in X,, = C([0, 15]; C(2)).

In fact, © : X;, — X,,, and for small 7, it is a strict contraction in a ball of
Xi

0"

Raul Ferreira ICAS 2016 9



Existence and uniqueness

We have existence and uniqueness of solutions in the time interval
[0, t()].
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Existence and uniqueness

We have existence and uniqueness of solutions in the time interval
[0, lo].

If {|ullx,, < oo, taking as initial datum u(-,7) € C(£2), it is possible to
extend the solution up to some interval [0, #;), for certain ¢; > 1.
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Existence and uniqueness

We have existence and uniqueness of solutions in the time interval
[03 tO]'

If {|ulx,, < oo, taking as initial datum u(-,7) € C(£2), it is possible to
extend the solution up to some interval [0, ), for certain ¢; > .

Therefore, if T < o it holds that

limsup [|u(, 7)o @) = +00-
t /T
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The energy functional

The energy functional associated to our problem is

- L / / T — )y, 1) — v, )lPdxdy

/Mqvxtd)ﬂ— // J(x = y)vPP~W(x, 1) dydx.
g+l RM\
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The energy functional

The energy functional associated to our problem is

=55 | [= = s npasas

/|v!qvxtdx+ // J(x — )P~ (x, 1) dy dx.
g+l RM\Q

Multiplying the equation by u,, it holds
d 2
() = — | (u)(x, 1) dx.
t Q

Thus H is non-increasing along the orbits.
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Blow-up criterium

Lemma

Ifg+ 1> p and 31y such that H(u(ty)) < 0. Then u blows up in finite
time.

Proof. Multiplying the equation by u, it holds

L'(u(t)) = —pH(u(t)) + <1 - qf—l) /Quq“ dx.

where

L(u(t)) = ;/Quzdx
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Blow-up criterium

Lemma

Ifg+ 1> p and 3ty such that H(u(ty)) < 0. Then u blows up in finite
time.

Proof. Multiplying the equation by u, it holds

L'(u(r)) = —pH(u(r)) + <1 — qf’ﬂ) /Quq“dx.

where
1

L(u(t)) = 2/Qu2dx

Assumingthatg+1>p>2
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Blow-up criterium

Lemma

Ifg+ 1 > p and 3ty such that H(u(ty)) < 0. Then u blows up in finite
time.

Proof. Multiplying the equation by u, it holds

L'(u(r)) = —pH(u(?)) + <1 - q_’i1> /Q ut ! d.

where
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Inthecaseg+1=p>2

L'(u(t)) =

Raul Ferreira ICAS 2016

Blow-up criterium

—pH(u(t)) >0



Blow-up criterium

Inthecaseg+1=p>2
L'(u(t)) = —pH(u(t)) > 0

On the other hand

(L (u(®)? = (j; (; /Q u2dx)>2 - ( / uu,dx) / W / u)2dx
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Blow-up criterium

Inthecaseg+1=p>2

L'(u(1)) = —pH(u(r)) > 0
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Blow-up criterium

Inthecaseg+1=p>2

L'(u(t)) = —pH(u(t)) > 0

(L' (u(r)))* < —2L(u(t))%H(u(t)) = ;L(u(t))L”(u(t))

By integration

L'(u(t)) = C(L(u(1)))
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Blow-up criterium

Inthecaseg+1=p>2

L'(u(1)) = —pH(u(r)) > 0

(L (1) < =2L(u(0) H () = Llu))L"(u(r)
By integration ,
Lu(t)) > (L)}

In both cases :

(/Q uz(x)dx>2 < C(T — t)a.
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Global existence criterium

Lemma
Ifq+ 1 < p and uy satisfies

L 76— 3)0) = 100 P=2a) = () by + ) >0,

(It ensures that u;, > 0), then the solution u is global.
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Global existence criterium

Lemma
Ifq+ 1 < p and u satisfies

/RN J (= y)luo(y) = uo (x) P2 (uo(y) — wo(x)) dy + ug(x) > 0,

(It ensures that u; > 0), then the solution u is global.

Proof. Assume that 31, — T such that A\, = ||u(-,#,)||.c — oo and scale
the solutions as follows

] 2—p Az_ztn
welx,7) =N, ulx, N, Pr+1,), for 7€ |- > 0 :=1,
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Global existence criterium

Since u, > 0 then (w,), > 0 and

wa (X, 7) < 1= |lwa(+,0) [0 = w(xn,0)

for all (x,7) € Q x I, and some x, € Q.
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Global existence criterium

Since u, > 0 then (w,), > 0 and

up(x) <
P

wa (X, 7) < 1= |lwa(+,0) [0 = w(xn,0)

for all (x,7) € Q x I, and some x, € Q.

There exists a subsequence n; such that w,, converge in L>~-weak* to
Weo, defined in O x (—o0,0] and satisfying

0<we <1, woo(xooao) =1,

where xo is the limit of x,,.
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Global existence criterium

The scaled functions verify

(Wa)r(x, 7) = /QJ(x—y)lwn(% 7) = wa(x, )P 72 (wa(y, 7) = walx, 7)) dy

) / J(x— y)dy + APl (x, 1),
RV\Q
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Global existence criterium

The scaled functions verify

(Wa)r(x, 7) = /QJ(X = W)wn (v, 7) = w6, )P (wn (v, 7) = wnlx, 7)) dy

(1) / J(x—y)dy + APl (2, 7),
RN\Q
In particular, at (x,7) = (x,,0)

/ T — )leon(y,0) — 1771 < AgPH / I — y) dy.
Q RN\Q
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Global existence criterium

The scaled functions verify

(Wa)r(x, 7) = /QJ(X = W)wn (v, 7) = w6, )P (wn (v, 7) = wnlx, 7)) dy

—? () / J(x = y)dy + NP (x, 1),
RN\Q
In particular, at (x,7) = (x,,0)

/ T — )leon(y,0) — 1771 < AgPH / I — y) dy.
Q RN\Q

By convexity of f(s) = |s — 1/P~! and Fatou’s Lemma

/ It — Wl (r,0) — 1P dy < — / J(too — ) dy.
Q RM\Q
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Global existence criterium

This implies both, Bj(xs) C © and weo(x,0) = 1 a.e. in By (xx)
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Global existence criterium

This implies both, B (x) C 2 and wee(x,0) = 1 a.e. in By (x)

In terms of the function u« it reads as

lim inf 0% )

— =] X € Bi(x).
e e~ )

Therefore, u(x, r) blows up a.e. in Bj(x)
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Global existence criterium

On the other hand, we can rewrite the functional energy as

Hw) = 5 [ [ 6= pluty) —utxopardy
1

— —— [ u" N (x, 1) dx
q+1Jo
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Global existence criterium

On the other hand, we can rewrite the functional energy as

//RN x = y)|uly, 1) — u(x, 1)[dx dy

- q+1
) u (x,1) dx
Then, using the following Poincaré inequality

There exists A(J, 2, p) > 0 such that

3 [ ras < [ - plut) - uray

for all u € L(2) with u = 0 outside of Q2
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Global existence criterium

Hu(r)) zcl/ \u]pdx—Cz/ ]9+ dx
Q Q
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Global existence criterium

H(u(t)) > C1/ |ulP dx — Cz/ |u|9 dx
Q Q

Since p > g + 1 we get
H(u(t)) — oo
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Blow-up versus global existence

We consider the initial datum

u(x,0) = up(x) = pxg,
with the parameter p conveniently chosen depending on the case.
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Blow-up versus global existence

We consider the initial datum

u(x,0) = up(x) = pxg,
with the parameter p conveniently chosen depending on the case.
e Case g < p — 1. Note that the inequality

[ 6= 3)05) = )P (a0(5) = o) b + ) = 0

reads as
p? —p”‘l/ J(x—y)dy >0.
RN\
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e Case g < p — 1. Note that the inequality

[ 6= 3)05) = )P (a0(5) = o) b + ) = 0

reads as
p? —p”‘l/ J(x—y)dy >0.
RN\

Taking p = 1 the last inequality holds and then «; is global.
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Blow-up versus global existence

We consider the initial datum

u(x,0) = up(x) = pxg,
with the parameter p conveniently chosen depending on the case.
e Case g < p — 1. Note that the inequality

[ 6= 3)05) = )P (a0(5) = o) b + ) = 0
reads as

p? —p”‘l/ J(x—y)dy >0.
RM\Q

Taking p = 1 the last inequality holds and then «; is global.

In the general case, for A > 1 the function
w(x, 1) = Auy (x, AP721)

is a global supersolution of our problem.
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Blow-up versus global existence

Note that the energy functional for u, takes the form

_ Q) R A (Y)
-2 /RN\QJ(X Ny

H(up,)
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Blow-up versus global existence

Note that the energy functional for «, takes the form

i) <@ (-2
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Blow-up versus global existence

Note that the energy functional for «, takes the form

i) <@ (-2

e Case g+ 1=p>2,u,(x,t) blows up for p > 0.
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Blow-up versus global existence

Note that the energy functional for «, takes the form

+1-
Hw) <@ (-2

e Case g+ 1=p>2,u,(x,t) blows up for p > 0.

1
o Case g+ 1 > p, u,(x,t) blows up for p > (%) e
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Blow-up versus global existence

Note that the energy functional for u, takes the form

+1—p
Hup) <@y (5 -2 7).

e Caseqg+1=p>2, u,(x,t) blows up for p > 0.

_
g+1—p

o Case g+ 1 > p, uy(x,1) blows up for p > (4’#)
If 2 is a thin domain, that is, for all x € Q,

/ Jx—y)dy = 8 >0,
RM\Q

then small constant functions are stationary supersolutions. Thus,
we also have global solution in this range.
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Blow-up rates

Let us see that the diffusion term plays no role and the blow-up rate is
given by the ODE u, = u4.
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Blow-up rates

Let us see that the diffusion term plays no role and the blow-up rate is
given by the ODE u, = u?.

Theorem
Letg+ 1 > p > 2 and u be a solution that blows up at time 7. Then

1
_ 1 a—1
max u(x,t) > Cy(T —1t) a1 Co=|—— .
max () 2 C(T 1) = (-5)
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Blow-up rates

Theorem

Letg+ 1 > p > 2 and u be a solution blowing up at time 7. Then, there
exists a positive constant such that

1
maxu(x,t) < C(T —1t) 1.
xeQ

Proof. Adding and subtracting »”~!, our equation can be written as
follows

ur(x,1) = I = 3) ([, P2l 1) = fulx, 1) = uly, )P 7> (ulx, 1) = u(y,1))) dy
RN

+ul(x,1) — P~ (x, 1),
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Blow-up rates

Theorem

Letg+ 1 > p > 2 and u be a solution blowing up at time 7. Then, there
exists a positive constant such that

1
1)< C(T—1t) 1.
max u(x, 1) < C(T ~1)

Proof. Adding and subtracting »’~!, our equation can be written as
follows

ur(x,1) = /RN I = ) (e, P 2ule, 1) = Ju(x, 1) = uly, )P 2 (uCx, 1) = u(y, 1)) dy

+ul(x,1) — P~ (x, 1),

Since the function f(s) = |s|’~2s is increasing, the integral term is
positive.
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Blow-up rates

Therefore

Raul Ferreira

u(x, 1) > ud(x,1) — "~ (x, 1)

ICAS 2016
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Blow-up rates

Therefore
M;(x, t) > uq(xa t) —u! (x7 t)

Let xo € B(u). since g > p — 1 there exists 7y near T such that, such that
fortp <t < T it holds
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Blow-up rates

Therefore
w(x, 1) > u? (x, 1) — ul ™! (x, 1)

Let xo € B(u). since g > p — 1 there exists 7y near T such that, such that
fortp <t < T it holds

By integration
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Blow-up rates

Theorem

Letg+ 1 =p,2 < p < 3 andu be a solution which blows up at time 7.
Then there exists a positive constant C such that
—1

max u(x,t) < C(T — t)r—2.
xeQ
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Blow-up rates

Theorem

Letg+ 1 =p,2 < p < 3 andu be a solution which blows up at time 7.
Then there exists a positive constant C such that
—1

t) < C(T —t)r—2.
max u(x,t) < C(T —1)

Proof. We rescale the solutions as follows

Wi s) = (T — ) 2ulx,1), 5= —log <TT_t) ,

Let x* € © such that w(x*(s),s) = maxq w(-,s)
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Blow-up rates

At this point the equation for w reads

a9 = [ =) [l PRl ) = ") =P 0) = ()],
1

*EW(X*J)
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Blow-up rates

At this point the equation for w reads

o) = [ =) [l Pl ) = o) 0P 5) = ()] b,

—plzw(x*,s)

We apply the Mean Value Theorem to the function f(z) = |z|"~2z to
obtain

l'15) = s 5) 4 (= 1) [T = NPl 0)

for some w(x*,s) — w(y,s) < & < w(x*,s).
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Blow-up rates

l15) £~ 0) + (= D) [ I = y)elns) dy
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Blow-up rates

Raul Ferreira

ICAS 2016
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Blow-up rates

ws(x*,5) < <ch 3(x, s)—1> w(x", s).

p—2
Since p < 3, if w is large it is increasing. So, w is bounded.
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Blow-up sets

Teorema

Let ¢ > p and Q = Bg(0). If u(x, ) is radially symmetric and decreasing,
then B(u) = {0}.
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Blow-up sets

Teorema

Let ¢ > p and Q = Bg(0). If u(x, ) is radially symmetric and decreasing,
then B(u) = {0}.

Teorema

Let ¢+ 1 = p and u be a solution which satisfies the upper blow-up rate
estimate

u(-,t)||oo < C(T — £)72.

Then u blows up in the whole domain.
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Blow-up sets

Teorema

Let ¢ > p and Q = Bg(0). If u(x, ) is radially symmetric and decreasing,
then B(u) = {0}.

Teorema

Let ¢ + 1 = p and u be a solution which satisfies the upper blow-up rate
estimate

—1
(-, 1)]|oo < C(T —1)r=2.
Then u blows up in the whole domain.

Gapforp—1<g<p
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Blow-up sets

As before, we rescale the solutions as follows

wlx,s) = (T = 1) Tu <x,t>,s:_k,g< T >

T—t
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Blow-up sets

As before, we rescale the solutions as follows

w(x,s) = (T = ) Tu(x,1), s = —log ( T_[>

Then, w is bounded and it satisfies

qtl—p

anes) = T y)ly.) — s )P wl0:5) = ) dy

i (x,5) — W (x, ).
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Blow-up sets

Then, w is bounded and it satisfies

qtl—p

alnes) = ¢ Tyl =l )P w0:5) = ) dy

+wi(x,s) — ﬁw(x, s).

e g+1>p.
. C
Jim et ={ g
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Blow-up sets

Then, w is bounded and it satisfies

qtl—p

alnes) = ¢ Tyl =l )P w0:5) = ) dy
+wi(x,s) — ﬁw(x, s).

e g+ 1>p. lfw(xs) =0

ws(x,5) < Ce™ -
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Blow-up sets

Then, w is bounded and it satisfies

qtl—p

alnes) = ¢ Tyl =l )P w0:5) = ) dy
+wi(x,s) — ﬁw(x, s).

e g+ 1>p. lfw(xs) =0

ws(x,5) < Ce™ -
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Blow-up sets

Then, w is bounded and it satisfies

_atl—p,

) = ¢TI olns) — e )P wl5) = () dy

+wi(x,s) — Iiw(x, s).

e g+ 1>p. lfw(xs) =0

ws(x,s) < Ce =17 — = 2w(x,s)
Then,
C >
u(x, 1) = e w(x,s) < { s<p
Ced! q<p

Raul Ferreira ICAS 2016 28



The Neumann problem

Theorem

e If g > 1 any solution to (2) blows up, while if ¢ < 1 every solution is
global.

o Rates:

1

o If 1 < gthen maxgu(-,t) > Cy(T —1) 7.
e If 1 <gandgq#p— 1, then maxgu(-,1) < C(T — l)_q%].
e If g=p—1and, either 2 < p < 3 or Q is a thin domain, then
1
maxg u(-,t) < C(T —1) 1 (*).
e Sets : the flat solution z(r) = C,(T — t)*qlil blows up globally.
However, there exists also single-point blow-up.
e If1 <g<p—1thenB(U) = Q.
e Assuming (*). If 1 < g=p — 1 ,then B(U) = Q.
o If g > p then we have single-point blow-up.
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