Skipper-CCD technology

A zero noise detector for DM searches and neutrino experiments

Javier Tiffenberg (Fermilab/UBA) Ricardo Piegaia (UBA)

April 26, 2018

Origin of the project: experiments using scientific CCDs

DAMIC

- Low mass Dark Matter search
- Installed at Snolab on Dec-2012
- Currently taking data

CONNIE

- Coherent *v*-nucleous interaction
- Installed next to Angra nuclear power plant on Dec-2014
- \bullet technique could be used for SB $\nu\text{-}\mathsf{Ex}$
- Currently taking data

Origin of the project: experiments using scientific CCDs

DAMIC & CONNIE use CCDs as targets to detect coherent DM/ν -nucleus interactions by measuring the ionization produced by the nuclear recoils

Sensitivity is limited by readout noise and NR-ionization yield

Origin of the project: motivation

Lower the energy threshold to look for light DM candidates

Detect DM-e interactions by measuring the ionization produced by the electron recoils (arXiv:1509.01598).

SENSEI LDRD* Collaboration (2015)

Develop a sub-electron resolution detector with an energy threshold close to the silicon band gap (1.1 eV) using SkipperCCDs from LBNL MSL Group at Fermilab:

Tiffenberg, Guardincerri, F Moroni, Sofo Haro, Estrada, Cancelo

* The Laboratory Directed Research and Development (LDRD) program enables high risk R&D at the US National Laboratories in areas of potential national value.

Successful completion of LDRD objectives

- Built the first working detector using Skipper-CCDs.
- First single-electron/single-photon detector with millions of pixels
- Validated the technology for DM and ν experiments:
 - Probe DM masses at the MeV scale through electron recoil
 - Probe axion and hidden-photon DM with masses down to 1 eV

Groups in Argentina working on the Skipper-CCD effort

Instituto de Investigaciones en Ingeniería Eléctrica, CONICET-UNS

- Development at IIIE of new readout electronics system specially designed for low threshold experiments using CCDs & Skipper-CCDs.
 - Under PICT-2016-4825 grant. Prototypes to be fabricated in Tecnopolis del Sur (public-private consortium in Bahia Blanca).
 - Technology transfer to ArsUltra company.

• Soto, Stefanazzi, Paolini, Chierchie, Mandolesi, Schlenker, F Moroni

Groups in Argentina working on the Skipper-CCD effort

Departamento de Física, FCEyN-UBA and IFIBA

- Detector comissioning, event reconstruction and MC simulation.
- Tiffenberg to return to IFIBA in mid-2019 as Investigador Adjunto:
 - ▶ build a "Laboratorio de Detectores de Ultra Bajo Umbral".
 - continue R&D on SENSEI experiment.
 - study potential Skipper-CCD applications.
- Donadón, Rodrigues, Cababié, Piegaia

Centro Atómico Bariloche

- Generic detector R&D on Skipper-CCDs.
- Investigating possibilities to build a Skipper-CCD based DM detector to be installed on the Southern Hemisphere.
- Bertou, Sofo Haro

Skipper-CCD performance

Charge in pixel distribution. Counting electrons: 0, 1, 2..

4000 samples

Charge in pixel distribution. Counting electrons: 0, 1, 2..

4000 samples

Counting electrons: 0, 1, 2..

Image taken with SENSEI: 20 samples per pixel

Single pixel distribution: X-rays from ⁵⁵Fe

The gain is the same for all the samples

Lowering the noise: Skipper CCD

- Main innovation: the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- The final pixel value is the average of the samples **Pixel value** = $\frac{1}{N} \Sigma_i^N$ (pixel sample)_i
- Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)

Ongoing Fermilab projects based on Skipper-CCD technology

First detector using Skipper-CCDs. SENSEI: light DM searches

- S-10, a 10g detector, to be assembled and tested at MINOS hall.
- Engineering run in a low radiation environment.
- Ongoing construction, project started on Dec-2017.
- To be followed by SENSEI S-100 at a deep mine location.
- Looking at options to install a detector on the Southern Hemisphere.

Ongoing Fermilab projects based on Skipper-CCD technology

CubeSat

- Science: look for DM annihilation signals
- Space certification of Skipper-CCD sensors
- Fully funded by Fermilab LDRD grant to start on Sep-18

R&D for large scale reactor-neutrino detector

- R&D needed to integrate a large scale Skipper-CCD instrument
- Cold electronics to digitize signal on detector package
- Applications to short-base line ν oscillations and reactor monitoring
- Awarded Fermilab LDRD grant to start on Sep-18

Collaboration opportunities

SENSEI & DM

- Small scale DM detector can make significant scientific contributions
- (CAB) project to install a detector on the Southern Hemisphere

CubeSat

- ullet Only conceptual design done so far. Timescale ${\sim}3{\text{-}4}$ yrs
- Need help with electronics, comms, thermal design, ...

R&D for large scale reactor-neutrino detector

- Cold electronics to digitize signal on detector package
- System design: data bus, analog bus. Develop a custom ASIC?

Imaging applications

• Explore high-resolution imaging applications for astronomical instruments and bio-medical research.

Summary

- Skipper-CCD is a technological leap: many immediate applications
 - Dark Matter searches
 - Detection of neutrinos from nuclear reactors
 - Imaging: stable photon counting over millions of pixels
- Several funded projects with collaboration opportunities
 - SENSEI experiments S-10 and S-100 for light DM searches.
 - CubeSat R&D
 - Large scale neutrino detector R&D
- Laboratorio de Detectores de Ultra Bajo Umbral at FCEyN, UBA
 - R&D on Skipper-CCD technologies
- Collaboration with IIIE and CAB to build experiments in Argentina
 - Small scale DM detector can make significant scientific contributions
 - Argentina has nuclear reactors that are perfect for neutrino experiments
 - Andes Laboratory could also host future versions of the DM detector

BACK UP SLIDES

CCD: readout

3x3 pixels CCD

CCD: readout

3x3 pixels CCD

CCD: readout

3x3 pixels CCD

capacitance of the system is set by the SN: C=0.05pFightarrow 3 μ V/e

excellent for removing high frequency noise but sensitive to low frequencies

2 e⁻ readout noise roughly corresponds to 50 eV energy threshold

Lowering the noise: Skipper CCD

SENSEI Collaboration

Build a detector using Skipper-CCDs to search for light DM canditates

- Fermilab: Alex Drlica-Wagner, Juan Estrada, Guillermo Fernandez, Miguel Sofo Haro (CAB), Javier Tiffenberg (UBA)
- Stony Brook: Rouven Essig
- Tel Aviv University: Liron Barack, Erez Ezion, Tomer Volansky
- Oregon University: Tien-Tien Yu
- + several additional students

Fully funded by Heising-Simons Foundation & Fermilab **HEISING-SIMONS** FOUNDATION

Whats going on now: Installation @MINOS

Technology demonstration: installation at shallow underground site

Whats going on now: Installation @MINOS

SENSEI Timeline

	2016	2017
-	LDRD funded, fabrication of SkipperCCD prototype	testing of prototype, received funding from HSF for S-10 and S-100
	2018	2019
-	assembly and testing of S-10, take data	take more data with S-10, begin analysis assembly and testing of S-100
	2020	2021
-	continue S-10 analysis, take data with S-100	S-100 analysis