Trigger system in ATLAS: Prospects for Argentina to contribute with developments for the LHC Phase II upgrades.

F. Monticelli. Coordinator of e/gamma trigger slice of ATLAS experiment UNLP - IFLP - CONICET, ATLAS Collaboration

April 27th, 2018

Fundamental Meets Technology

Large Hadron Collider

Large Hadron Collider

Specifications

- Is a hadron collider (proton-proton, proton-lead, lead-lead nuclei)
- Built 100m underground, 27km circumference
- 14 TeV nominal centre of mass energy (operating currently at 13 TeV)
- Superconducting Magnets of 8T (13K5 Amps electric current) to keep the protons on track
- Magnets operate cooled down with liquid helium at $1.9^{\circ}K \rightarrow -271^{\circ}C$
- Full volume of beam pipes at 10^{-13} Atm vacum

- Multipurpose detector
- 46m length x 25m diameter x 7000 Tons (the weight of the Eiffel tower)
- 100m underground at the LHC

ATLAS has different subdetectors:

• Inner detector \rightarrow Tracking

- Measure the tracks of charged particles
- More than 90M channels to read out
- IBL+pixel detector+SCT+TRT

ATLAS has different subdetectors:

- Inner detector \rightarrow Tracking
- Calorimeters

- A Lead/Liquid Argon (LAr) high granularity EM calorimeter. (absorbers/sampling material).
- High precision for electrons/photons energy/shower shape measurements
- An iron/Plastic Scintilators complemented by copper/LAr for Hadronic calorimetry.
- Tungsten/LAr covering the Forward region.
- Up to eta=4.9 coverage.

ATLAS has different subdetectors:

- $\bullet \ \text{Inner detector} \to \text{Tracking}$
- Calorimeters
- Muon detectors

• MDT and CSC chambers plus RPC and TGC trigger

ATLAS trigger system

Why a trigger system?

- The new physics events are very rare
- That is why the LHC makes a large number of collisions (40M/sec)
- We can only store the information of the relevan ones (\sim 1000/s)

Trigger system decides online whether or not to keep an event

Crucial impact on quality of data used in physics analysis!

ATLAS Trigger System during Run-2 at the LHC incorporates several upgrades and improvements since Run-1 to cope with:

- Higher rates
- More interactions per bunch crossing (pile-up)
- Higher centre-of-mass energy collisions (from 7/8 TeV \rightarrow 13 TeV)
- Higher instantaneous luminosty

ATLAS TDAQ system

ATLAS TDAQ system

- Upgraded L1 Calo, L1 Muon and CTP (Central Trigger Processor)
 - L1 Calo: new Multi-Chip Module (nMCM) allows more flexible signal processing, more thresholds
 - L1 Muon: coincidences with inner detector, additional chambers in the feet of the barrel region and from Tile extended barrel region
 - CTP: more resources, support multi-partition running
- L1Topo
 - Allows for topological selections between L1 trigger objects (e.g. ΔR) to keep L1 thresholds low

ATLAS TDAQ system

- Single farm (merged L2-EF) for better resource sharing and overall simplification
- Fast offline-like algorithms running mostly in L1 RoIs

Calorimeter detector

- Average 350 ms latency
- Full upgrade of readout and data storage systems
- ~1 kHz of physics (full event building) output rate achieved
- Partial event building used for Trigger Level Analysis, detector monitoring and calibrations
- Once HLT is passed, the event is accepted and written into data streams
- Then offline software is run at Tier-0 to reconstruct the objects

<u>Triggering e/γ in ATLAS as a test case</u>

- E/γ trigger is based on reconstructing objects within a Region of Interest (RoI)
 - Level 1 Electromagnetic (L1 Calo) trigger seeds the Rol for the High Level Trigger (HLT)

\bullet E/ γ HLT algorithms reconstruct and identify

- Clusters
- Tracks
- Photons Electromagnetic (EM) Cluster
- Electrons EM Cluster + Track

• E/γ HLT algorithm flow

- Fast algorithms rejects event early
- Precise algorithms to efficiently identify ${\rm e}/\gamma$

• E/γ Reconstruction, calibration and identification

Offline software and techniques

Precise e/v Selection

Fast

Level 1 EM trigger

Run-2

- Improved Signal Processing: new Multi-Chip-Module (nMCM)
 - Improved energy resolution (noise auto-correlation filtering)
 - Dynamical pedestal correction
- Clustering: Cluster Processor Module (CPM) firmware
 - E_T -dependent electromagnetic/hadronic isolation cuts with $\Delta E_T \sim 0.5~{\rm GeV}$ precision
- Counting: New extended Common Merger Module (CMX)
 - Doubles max number of E_T thresholds to 16
 - E_T thresholds can have $\Delta\eta$ =0.1 in granularity

While during Run-1

- η -dependent E_T thresholds $\rightarrow \Delta \eta$ =0.4 granularity
- $\bullet\,$ Fixed Isolation cut \rightarrow Hadronic-core isolation H $\leq 1~GeV$
- EM Isolation not used (but available) during Run-1

Electrons and photons at HLT

- Energy of an e/γ candidate built with cluster of cells in EM calorimeter
- \bullet Local maximum required for a cluster seed \rightarrow sliding window algorithm
- Photons are reconstructed with only the cluster
- Common shower shape variables for e/γ calculated for identification

Energy Calibration at HLT

- EM cluster properties (longitudinal development) are calibrated to the original energy of the electron and photon in Monte Carlo (MC) samples
- MC samples are used to determine the e/y response calibration where the constants are determined in a multivariate algorithm
- Good agreement between data and MC

Identifying e/γ

- Common set of shower shape variables used to identify electrons and photons
 - EM shower can be characterised by the longitudinal (depth) and lateral (width) shapes
 - e/γ use same variables, but different cut values

Variables and Position

	Strips	2nd	Had.
Ratios	f1, fside	R_{η}^*, R_{ϕ}	R _{Had} .*
Widths	Ws,3, Ws,tot	$W_{\eta,2}^*$	X.Z
Shapes	ΔE , E_{ratio}	* Used in	PhotonLoose.

Identification of photons and electrons

- Optimised in bins of E_T and η
- Several levels of discrimination with higher efficiency but lower purity (loose, medium, tight)

• Electron identification incorporates tracking information

- Transition radiation hit information
- Track quality & Track-cluster matching

Shower Shapes

Improved Electron ID for Run-2

Rate depends strongly on Electron trigger threshold

- Physics potential suffers as threshold increases
- Run-2 improve purity and reduce background with tighter selections and multivariate techniques

Electron Likelihood (LH) Particle Identification

- Introduced a NN ringer algorighm for fast identification
- Same as offline ID on precise reconstruction
- Relies on same variables as cut-based selection
- LH tuned to same signal efficiency as a cut-based selection
 - Factor 2 improvement in background rejection
 - Higher signal purity
 - $\bullet\,$ LH discriminant is $<\mu>$ dependent to kepp high efficiency at high pileup

$$d\mathcal{L} = rac{\mathcal{L}_S}{\mathcal{L}_S + \mathcal{L}_B}, \mathcal{L}(ec{x}) = \prod_{i=1}^n P_{s,i}(x_i)$$

Electron Trigger Performance

Likelihood electron selection out-performs cut-based selection in Run-2

- LH selection efficiency 4-6% higher than cut-based selection
- Likelihood trigger out-performs cut-based when measured with respect to any offline identification
 - Tight selection 45% rate reduction with 7% efficiency loss w.r.t. cut-based
- Excellent Data-MC agreement

Photon Trigger Performance

Photon performance of Run-2 similar to Run-1

- $\bullet\,$ Photon ID uses cut-base selection as in Run-1 \to reoptimized for Run-2 higher \sqrt{s} and instantaneous luminosity
- Incorporated medium Id working point at trigger level, in addition to loose and tight
 - Medium includes lateral Energy ratio in first layer to discriminate γ from $\pi^0 o \gamma\gamma$
- Introduced topological cluster isolation for photon triggers
- Lowest threshold unprescaled triggers up to $L = 1.2 \times 10^{34} cm^{-2} s^{-1}$:
 - g35_medium_g25_medium
 - g140_loose

LHC/HL-LHC

- 2019 2020 is LS2 to get ready for Run3: 14 TeV and higher inst luminosities \rightarrow Phase-I
- The HL-LHC project is planned to begin collisions by 2026
- ATLAS will collect an integrated luminosity of 3000-4000 fb⁻¹in 10 years
- HL-LHC upgrades will happen during Long Shutdown 3 (2024-2026)

TDAQ system being updated for next run: Phase-I

Phase-I upgrade \rightarrow meets the needs for Run3

- More background rejection for e_{γ} trigger through the upgrade of the EM trigger electronics
- Better muon reconstruction and fake rejection in muon endcap by installing new precision and high efficiency detectors in a New Small Wheel
- FTK (Fast TracKer): full-event hardware-based (Associative memory and FPGAs) track reconstruction during event processing at the HLT CPU farms

Pileup conditions at HL-LHC \rightarrow 10 times more rate

Limitations of Phase-I system among others:

- The readout bandwidth is limited by the detector front-end electronics
- The Level-1 trigger rate can't go higher than 100kHz
- Phase-I system latency is insufficient to implement more powerful selection algorithms in order to reduce the trigger rate

22

- Stand the 5-7 10³⁴/cm²/s instantaneous luminosity is beyond the capabilities of the current detectors
- Replace several parts (like full inner detector!) to achieve a robuster, faster, radiation harder and lighter detector.
- Goal : have the same-or better-performances in HL-LHC harsh conditions than in Run2
- Upgrade: fruit of permanent feedback between physics requirements and detectors component design

- Protect against high fluencies. Needs more radiation hard eletronics design.
- Mitigate pileup rates and occupancy
- Keep low p_{T} requirements for main triggers
- Guarantee precise measurements up to large rapidity
- Lighten the detector, dropping material

HL-LHC collisions plans

Ultimate scenario 7.5 10³⁴: 320 fb⁻¹/y for 160 days ions collisions end at LS4

Physics days: 160 Run4 \rightarrow 200 Run5 \rightarrow 220 Run6

Some requirements

- TDAQ ATLAS system needs to be upgraded to cope with HL-LHC conditions
- Part of what is currently computed at the HLT would need to be achieved computed at Hardware trigger
- Some of the parameters (including contingency) required for TDAQ @HL-LHC:

Parameter	Phase-II value
Clock frequency	40.08 MHz
Level-0 trigger rate	1 MHz
Minimum interval between two L0A signals	0 BC
Consecutive Level-0 triggers	\leq 4 L0A in 5 BC
Level-0 burst size	\leq 8 L0A in 0.5 $\mu m s$
	\leq 128 L0A in 90 $\mu m s$
Maximum skew between all calorimeter inputs to L0Calo FEXs	16 BC
Level-0 latency	10 µs
Calorimeter data reception in L0Calo & L0Muon processors	$1.7\mu s$
High Granularity Calorimeter data reception in Level-0	$1.7\mu s$
Seeding Muon detector data reception in L0Muon	$1.7\mu s$
Precision Muon detector data reception in L0Muon	2.8 µs
Deadtime	<0.1% per detector system

TDQ Phase-II upgrade

Many complex analysis on real time at hardware trigger

Among other aspects

- L0 Calo will include electron FeatureExtractor (eFEX), jet (jFEX), global (gFEX) and forward jet (fFEX), all implemented in FPGA hardware
- Global trigger will replace current L1-Topo, get inputs from L0 Calo and muons to make a decision
- Common hardware, specialized firmware
- Access to full calorimeter data

Not just TDAQ needs to be updated

Upgrade of LAr electronics

- The LAr calorimeters themselves are expected to operate reliably during the HL-LHC data-taking period
- But the current electronics is not compatible with operations at HL-LHC
- All front-end and back-end electronics will be replaced

La Plata and the upgrades

We were deeply involved for Phase-I studies This study showed how improvement in the calorimeter granularity at L1 could lead to high

efficiency and high background rejection of electron and photons

Studies for Phase-II

a.u.

- Made occupancy studies of the detector at mu=200
- Under some assumptions, by merging events in 2016 data
- Estimations on rates and readout requirements (preliminary and non-public, can't be shown here)

Phase-II involvement, plans and opportunities for Argentina

Global trigger

- We are joining the effort to collaborate in development of HW/FW for the Global Trigger
- Hiring and engineer (CPA-CONICET) to full time contribute on this R&D effort
- The aim is to build hardware in Argentina, once Phase-II production starts. What and how much each institution builds is under discussion with the ATLAS collaboration, final decision during this year.

28

- In such case we would need to be able to produce and build multi-layer high speed boards with high-end FPGAs
- Likely, in addition, we will be responsible of R&D and production of a module of signal distribution (local industries play a role here)

New facility at new Institute building

- IFLP is moving to new building, equipped with a specific electronics lab for this project (and future ones)
- Starting to equip it. (High end Computers, high speed Oscilloscopes, high speed random signal generators and FPGA evaluation kit)

New responsibilities

 Just joint with Oregon the effort of coordinating Global Trigger algorithm developments for trigger signatures

Conclusions

Run-2

- As members of the e/gamma trigger group we have contributed with ATLAS in performance measurements, selection tuning, deployment of optimizations at the HLT and operation
- Contributed to studies for the Phase-I LoI and studies related to Phase-II

Phase-II: A step forward for Argentina contribution to ATLAS

- Provide in kind contribution to TDAQ Phase-II upgrade
- Full time Engineer to collaborate in Global Trigger Hardware/Firmware
- Aim is to build some of Global modules in Argentina
- In addition to some specific hardware for signal distribution

Special opportunity for local high-end electronics industry