Exercises: Generalised geometry and supersymmetric spaces

G-structures and intrinsic torsion

1. What invariant tensor defines an $SL(d, \mathbb{R}) \subset GL(d, \mathbb{R})$ structure? How does the existence of such a structure constrain the topology of the manifold M?

Suppose you have two $SL(d,\mathbb{R})$ compatible connections ∇ and ∇' and define $\nabla' - \nabla = \Omega$. Show that Ω is a tensor. How is it constrained?

2. Show that the torsion-free condition for an almost complex structure, defined by I and given by

$$[v, w] \in \Gamma(T^{1,0}) \qquad \forall v, w \in \Gamma(T^{1,0}), \tag{1}$$

is equivalent to the vanishing of the Nijenhuis tensor

$$N_{np}^{m} := I_{q}^{m} \left(\partial_{n} I_{p}^{q} - \partial_{p} I_{n}^{q} \right) - \left(I_{n}^{q} \partial_{q} I_{p}^{m} - I_{p}^{q} \partial_{q} I_{n}^{m} \right) = 0.$$
 (2)

(Note that you can use I to project onto $T^{1,0}$.)

3. Consider a "product structure", that is a map $R:TM\to TM$ such that $R^2=1$. Show that R defines a $GL(p,\mathbb{R})\times GL(q,\mathbb{R})\subset GL(n,\mathbb{R})$ structure where n=p+q and hence gives a decomposition of the tangent space as

$$TM \simeq L_1 \oplus L_2$$
 (3)

where L_1 and L_2 have dimension p and q respectively.

Show that vanishing of the intrinsic torsion is equivalent to the pair of conditions

$$[v, w] \in \Gamma(L_1) \qquad \forall v, w \in \Gamma(L_1),$$

$$[v, w] \in \Gamma(L_2) \qquad \forall v, w \in \Gamma(L_2).$$
(4)

4. Consider the case were M is a Lie group with a basis for left-invariant vectors fields $\{l_a\}$ satisfying

$$[l_a, l_b] = f_{ab}{}^c l_c, \tag{5}$$

where $f_{ab}{}^c$ are the structure constants of the Lie algebra. Argue that the l_a define an "indentity structure" or "parallelisation", that is a G-structure with a trivial group $G = \{1\}$.

What is the intrinsic torsion?

5. Consider an almost symplectic structure defined by a two-form $\omega \in \Gamma(\Lambda^2 T^*M)$. Show that the $Sp(2n, \mathbb{R})$ structure is torsion-free if and only if $d\omega = 0$.