String Compactifications

Exercise 1.1:

Find the explicit expression for the energy-momentum tensor for the Polyakov action using the definition

$$
T_{\alpha \beta}=-\frac{2}{T} \frac{1}{\sqrt{-h}} \frac{\delta S_{P}}{\delta h^{\alpha \beta}}
$$

and show it is traceless $\left(h^{\alpha \beta} T_{\alpha \beta}=0\right)$. Relate the trace $T^{\alpha}{ }_{\alpha}$ to the variation of the action under a Weyl transformation $h_{\alpha \beta} \rightarrow e^{2 \omega} h_{\alpha \beta}$. In D-dimensional flat space ($g_{\mu \nu}=\eta_{\mu \nu}$), relate the conservation law $\nabla^{\alpha} T_{\alpha \beta}=0$ to the equations of motion for the fields X^{μ}.

Exercise 1.2:

Compute the mode expansion and mass spectrum of a closed string with periodic boundary conditions for the coordinates X^{0}, \ldots, X^{24} and:

$$
X^{25}(\tau, \sigma+\pi)=X^{25}(\tau, \sigma)+2 \pi m R
$$

where m is integer. When can we make sense of this solution? What condition does one get from the constraint $\int_{0}^{\pi} \dot{X} \cdot X^{\prime}=0$?

Exercise 1.3:

Show that the state

$$
\left|\phi>=e_{\mu} \alpha_{-1}^{\mu}\right| 0>
$$

has positive norm for e^{μ} spacelike.

Exercise 1.4:

a) Find the mass squared of the following open-string states

$$
\begin{array}{ll}
\left|\phi_{1}>=\alpha_{-1}^{\mu}\right| 0>, & \left|\phi_{2}>=\alpha_{-1}^{\mu} \alpha_{-1}^{\nu}\right| 0> \\
\left|\phi_{3}>=\alpha_{-3}^{\mu}\right| 0>, & \left|\phi_{4}>=\alpha_{-1}^{\mu} \alpha_{-1}^{\nu} \alpha_{-2}^{\rho}\right| 0>
\end{array}
$$

b) Find the mass squared of the following closed-string states

$$
\left|\phi_{1}>=\alpha_{-1}^{\mu} \tilde{\alpha}_{-1}^{\nu}\right| 0>, \quad\left|\phi_{2}>=\alpha_{-1}^{\mu} \alpha_{-1}^{\nu} \tilde{\alpha}_{-2}^{\rho}\right| 0>
$$

c) What can you say about the following closed-string state?

$$
\left|\phi_{3}>\alpha_{-1}^{\mu} \tilde{\alpha}_{-2}^{\nu}\right| 0>
$$

Exercise 2.1:

Consider a 26 -dimensional space-time with metric

$$
d s^{2}=G_{M N} d x^{M} d x^{N}=g_{\mu \nu} d x^{\mu} d x^{\nu}+e^{2 \sigma}\left(d x^{25}+A_{\mu} d x^{\mu}\right)^{2}
$$

where $x^{25} \sim x^{25}+2 \pi R$. Show that the 26 -dimensional action

$$
S_{26}=\frac{1}{16 \pi G_{N}^{(26)}} \int d^{26} x \sqrt{-G}\left(R^{(26)}+4 \partial_{\mu} \phi \partial^{\mu} \phi\right)
$$

after integrating over x^{25}, becomes

$$
S_{25}=\frac{1}{16 \pi G_{N}^{(25)}} \int d^{25} x \sqrt{-g}\left(R^{(25)}+F_{\mu \nu} F^{\mu \nu}+\partial_{\mu} \sigma_{0} \partial^{\mu} \sigma_{0}+4 \partial_{\mu} \phi_{0} \partial^{\mu} \phi_{0}+\text { KK tower }\right)
$$

where σ_{0} and ϕ_{0} are the zero modes. Find the relation between the 26 and the 25dimensional Newton constants.

Exercise 2.2:

Show that for the closed bosonic string compactified on a circle at the self-dual radius $R=\sqrt{\alpha^{\prime}}$ there are 4 extra massless vectors and 8 extra massless scalars coming from states with non-zero momentum and/or winding number along the circle.

Exercise 2.3:

Show that for the closed bosonic string compactified on a torus T^{k} at at particular point in moduli space such that there is an enhancement of symmetry to a group $G \times G$, with G os dimension d and rank k, there are a total of d^{2} massless scalars (on top of the zero mode of the dilaton).

Exercise 2.4:

Consider T^{2} compactifications parametrized by the coordinates x^{8} and x^{9}. Define the complex moduli ρ by $\rho=B_{89}+i \operatorname{vol}\left(T^{2}\right)$, and τ is such that the metric is

$$
d s_{2}^{2}=\frac{\operatorname{Im} \rho}{\operatorname{Im} \tau}\left|d x^{8}+\tau d x^{9}\right|^{2} \equiv \frac{\operatorname{Im} \rho}{\operatorname{Im} \tau} d z d \bar{z}
$$

Take $\operatorname{Im} \rho=1$ and show that one can write $g_{2}=\partial_{\tau} \partial_{\bar{\tau}} K$ where $K=-\log \left(i \int \Omega \wedge \bar{\Omega}\right)$ and $\Omega=d x^{8}+\tau d x^{9}$.

Exercise 2.5:

The group $O(k, k, \mathbb{Z})$ is generated by the following group elements
$O_{\Theta}=\left(\begin{array}{cc}1 & \Theta \\ 0 & 1\end{array}\right) \quad \Theta_{m n} \in \mathbb{Z}, \quad O_{M}=\left(\begin{array}{cc}M & 0 \\ 0 & \left(M^{t}\right)^{-1}\end{array}\right) M \in G L(k ; \mathbb{Z}), \quad O_{D_{i}}=\left(\begin{array}{cc}1-D_{i} & D_{i} \\ D_{i} & 1-D_{i}\end{array}\right)$,
where $\Theta^{T}=-\Theta$ and D_{i} is a $k \times k$ matrix with all zeros except for a one at the $i i$ component. See how these elements act on the on the momentum and winding numbers $\left(\omega^{i}, n_{i}\right)$, and on the generalized metric \mathcal{H}

$$
\mathcal{H}=\left(\begin{array}{cc}
g-B g^{-1} B & B g^{-1} \tag{1}\\
-g^{-1} B & g^{-1}
\end{array}\right)
$$

Disentangle these as actions on g and B. How does $\prod_{i=1}^{k} O_{D_{i}}$ act?

Exercise 2.6:

Take a 3 -torus T^{3} parameterised by coordinates $\left(x^{1}, x^{2}, x^{3}\right) \sim\left(x^{1}+1, x^{2}, x^{3}\right) \sim\left(x^{1}, x^{2}+\right.$ $\left.1, x^{3}\right) \sim\left(x^{1}, x^{2}, x^{3}+1\right)$ with N units of H_{3} flux on it. Take a gauge for the B-field such that $\partial_{x^{3}}$ is an isometry. T-dualize this background along x^{3}, i.e. transform by the $O(3,3, \mathbb{Z})$ element $O_{D_{3}}$ in the previous exercise. What are the T-dual metric and B-field? What is the new manifold topologically? Taking the original T^{3} as an $S^{1} \times T^{2}$, with the T^{2} in the (x^{1}, x^{2}) directions, and parameterise the T^{2} in terms of the Kähler and complex structure moduli ρ and τ in exercise 2.4. How does the T -duality act on ρ and τ ? Do a second T-duality in the direction x^{2}. Can you make sense of the dual background globally? How does the second T-duality act on τ and ρ ?

Exercise 3.1:

Show that $\mathbb{C} P^{n}$ is Kahler (show it is complex by building an atlas with holomophic transition functions). The Kahler potential is the "Fubini-Study":

$$
K=\log \left(1+|z|^{2}\right)
$$

Exercise 3.2:

Consider the group manifold defined by six globally defined 1-forms e^{a}, $a=1, \ldots, 6$ satisfying

$$
d e^{1}=d e^{2}=d e^{3}=d e^{4}=0, d e^{5}=e^{1} \wedge e^{2}, d e^{6}=e^{3} \wedge e^{4} .
$$

Is the manifold complex? Is it symplectic? Is it Kähler? Answer these questions by trying to build explicitly a 3 -form Ω and a 2 -form J.

Exercise 4.1:

Let $\left\{\omega_{a}\right\}$ be a basis for H^{p}. Show that there exists a basis $\left\{\tilde{\omega}^{a}\right\}$ for H^{d-p} with the property that

$$
\int_{M} \omega_{a} \wedge \tilde{\omega}^{b}=\delta_{a}{ }^{b}
$$

Exercise 4.2:

Compute the Betti numbers for the manifold in Exercise 3.2.

Exercise 4.3:

Show that $\triangle A_{p}=0 \Leftrightarrow d A_{p}=0, d^{\dagger} A_{p}=0$

Exercise 4.4:

Show that $h^{p, q}=h^{q, p}$ and $h^{n-p, n-q}=h^{p, q}$.

Exercise 5.1:

Consider a compactificaion on $T^{2} \times T^{2} \times T^{2}$ with a single complex structure modulus, namely: $d z^{i}=d x^{i}+\tau d y^{i}, \mathrm{i}=1,2,3$, where $\left(x^{i}, y^{i}\right)$ are the coordinates on each torus. Consider the 3 -forms $\alpha_{0}=d x^{1} \wedge d x^{2} \wedge d x^{3}, \alpha_{i}=\epsilon_{i j k} d x^{j} \wedge d x^{k} \wedge d y^{i}($ no sum over $i)$, $\beta^{i}=\epsilon_{i j k} d y^{j} \wedge d y^{k} \wedge d x^{i}, \beta^{0}=d y^{1} \wedge d y^{2} \wedge d y^{3}$. Write Ω in terms of this basis, and find the Kahler potential. Add fluxes for the field strengths H_{3} y F_{3} along all 3 -cycles. Find the potential. Show that there are Minkowski solutions with the modulus τ fixed.

