## Vertex Algebras

## Octubre 2019

## Outline

(1) Vertex algebras

- Formal Calculus
- Locality
- Vertex Algebras
- Structure of VA


## Vertex algebras <br> - Other equivalent definitions of vertex algebras

## Outline

(1) Vertex algebras

- Formal Calculus
- Locality
- Vertex Algebras
- Structure of VA
(2) Vertex algebras
- Other equivalent definitions of vertex algebras


## Motivation

All this, was starting even before R. Borcherds introduced the precise mathematical notion of "vertex algebra" in the 1980s

## Motivation

All this, was starting even before R. Borcherds introduced the precise mathematical notion of "vertex algebra" in the 1980s

- From String Theory:

Elementary particles manifest themselves as "vibrational modes" of fundamental strings moving through space, rather than as moving points, according to quantum field-theoretic principles

A string sweeps out a two-dimensional "world-sheet" in
space-time. ( Riemann surface).
The result is two-dimensional conformal (quantum)field theory, formalized in an algebraic spirit (on a physical level of rigor), ( $A$. Belavin,A. Polyakov and A. Zamolodchikov).

## Motivation

All this, was starting even before R. Borcherds introduced the precise mathematical notion of "vertex algebra" in the 1980s

- From String Theory:

Elementary particles manifest themselves as "vibrational modes" of fundamental strings moving through space, rather than as moving points, according to quantum field-theoretic principles

A string sweeps out a two-dimensional "world-sheet" in
space-time. ( Riemann surface).
The result is two-dimensional conformal (quantum)field theory, formalized in an algebraic spirit (on a physical level of rigor), ( $A$. Belavin,A. Polyakov and A. Zamolodchikov).

## Motivation

All this, was starting even before R. Borcherds introduced the precise mathematical notion of "vertex algebra" in the 1980s

- From String Theory:

Elementary particles manifest themselves as "vibrational modes" of fundamental strings moving through space, rather than as moving points, according to quantum field-theoretic principles

A string sweeps out a two-dimensional "world-sheet" in
space-time. ( Riemann surface),
The result is two-dimensional conformal (quantum)field theory, formalized in an algebraic spirit (on a physical level of rigor),( A Belavin,A. Polyakov and A. Zamolodchikov).

## Motivation

All this, was starting even before R. Borcherds introduced the precise mathematical notion of "vertex algebra" in the 1980s

- From String Theory:

Elementary particles manifest themselves as "vibrational modes" of fundamental strings moving through space, rather than as moving points, according to quantum field-theoretic principles

A string sweeps out a two-dimensional "world-sheet" in space-time. ( Riemann surface).
The result is two-dimensional conformal (quantum)field theory, formalized in an algebraic spirit (on a physical level of rigor), ( $A$. Belavin,A. Polyakov and A. Zamolodchikov).

## Motivation

All this, was starting even before R. Borcherds introduced the precise mathematical notion of "vertex algebra" in the 1980s

- From String Theory:

Elementary particles manifest themselves as "vibrational modes" of fundamental strings moving through space, rather than as moving points, according to quantum field-theoretic principles

A string sweeps out a two-dimensional "world-sheet" in space-time. ( Riemann surface).
The result is two-dimensional conformal (quantum)field theory, formalized in an algebraic spirit (on a physical level of rigor),( A. Belavin,A. Polyakov and A. Zamolodchikov).

## Motivation

All this, was starting even before R. Borcherds introduced the precise mathematical notion of "vertex algebra" in the 1980s

- From String Theory:

Elementary particles manifest themselves as "vibrational modes" of fundamental strings moving through space, rather than as moving points, according to quantum field-theoretic principles

A string sweeps out a two-dimensional "world-sheet" in space-time. ( Riemann surface).
The result is two-dimensional conformal (quantum)field theory, formalized in an algebraic spirit (on a physical level of rigor),( A. Belavin,A. Polyakov and A. Zamolodchikov).

A certain new kind of algebra of operators was emerging, called "operator algebras" based on the "operator product expansion" in quantum field theory.

Roughly speaking, the elements of these "algebras" are certain types of vertex operators.

These are operators of types introduced in the early days of string theory in order to describe certain kinds of physical interactions, at a "vertex," where, for instance, two particles (or strings) enter, and as a result of the interaction, one particle (or string) exits.

These "algebra elements" have certain physically motivated properties.

A certain new kind of algebra of operators was emerging, called "operator algebras" based on the "operator product expansion" in quantum field theory.

Roughly speaking, the elements of these "algebras" are certain types of vertex operators.

> These are operators of types introduced in the early days of string theory in order to describe certain kinds of physical interactions, at a "vertex," where, for instance, two particles (or strings) enter, and as a result of the interaction, one particle (or string) exits.

These "algebra elements" have certain physically motivated properties.

A certain new kind of algebra of operators was emerging, called "operator algebras" based on the "operator product expansion" in quantum field theory.

Roughly speaking, the elements of these "algebras" are certain types of vertex operators.

These are operators of types introduced in the early days of string theory in order to describe certain kinds of physical interactions, at a "vertex," where, for instance, two particles (or strings) enter, and as a result of the interaction, one particle (or string) exits.

These "algebra elements" have certain physically motivated properties.

A certain new kind of algebra of operators was emerging, called "operator algebras" based on the "operator product expansion" in quantum field theory.

Roughly speaking, the elements of these "algebras" are certain types of vertex operators.

These are operators of types introduced in the early days of string theory in order to describe certain kinds of physical interactions, at a "vertex," where, for instance, two particles (or strings) enter, and as a result of the interaction, one particle (or string) exits.

These "algebra elements" have certain physically motivated properties.

- From Mathematics: "Monstrous Moonshine" Program to clasify finite simple groups.

> Around 1980, most of the finite simple groups-the Chevalley groups and variants- belong to infinite families related to Lie groups.

> The largest "sporadic" (not belonging to one of the infinite families) finite simple group, the Fischer-Griess Monster $\mathbb{M}$, had been predicted and was constructed by Griess as a symmetry group (of order about $10^{54}$ ) of a commutative, but very highly nonassociative, seemingly ad hoc new algebra $\mathbb{B}$ of dimension 196883.
J. Tits proved that $\mathbb{M}$ is actually the full automorphism group of $\mathbb{B}$.

- From Mathematics: "Monstrous Moonshine" Program to clasify finite simple groups.

> Around 1980, most of the finite simple groups-the Chevalley groups and variants- belong to infinite families related to Lie groups.

> The largest "sporadic" (not belonging to one of the infinite families) finite simple group, the Fischer-Griess Monster $\mathbb{M}$, had been predicted and was constructed by Griess as a symmetry group (of order about $10^{54}$ ) of a commutative, but very highly nonassociative, seemingly ad hoc new algebra $\mathbb{B}$ of dimension 196883.
J. Tits proved that $\mathbb{M}$ is actually the full automorphism group of $\mathbb{B}$.

- From Mathematics: "Monstrous Moonshine" Program to clasify finite simple groups.

Around 1980, most of the finite simple groups-the Chevalley groups and variants- belong to infinite families related to Lie groups.

The largest "sporadic" (not belonging to one of the infinite families) finite simple group, the Fischer-Griess Monster $\mathbb{M}$, had been predicted and was constructed by Griess as a symmetry group (of order about $10^{54}$ ) of a commutative, but very highly nonassociative, seemingly ad hoc new algebra $\mathbb{B}$ of dimension 196883.
J. Tits proved that $\mathbb{M}$ is actually the full automorphism group of $\mathbb{B}$.

- From Mathematics: "Monstrous Moonshine" Program to clasify finite simple groups.

Around 1980, most of the finite simple groups-the Chevalley groups and variants- belong to infinite families related to Lie groups.

The largest "sporadic" (not belonging to one of the infinite families) finite simple group, the Fischer-Griess Monster $\mathbb{M}$, had been predicted and was constructed by Griess as a symmetry group (of order about $10^{54}$ ) of a commutative, but very highly nonassociative, seemingly ad hoc new algebra $\mathbb{B}$ of dimension 196883.
$J$. Tits proved that $\mathbb{M}$ is actually the full automorphism group of $\mathbb{B}$.

- From Mathematics: "Monstrous Moonshine" Program to clasify finite simple groups.

Around 1980, most of the finite simple groups-the Chevalley groups and variants- belong to infinite families related to Lie groups.

The largest "sporadic" (not belonging to one of the infinite families) finite simple group, the Fischer-Griess Monster $\mathbb{M}$, had been predicted and was constructed by Griess as a symmetry group (of order about $10^{54}$ ) of a commutative, but very highly nonassociative, seemingly ad hoc new algebra $\mathbb{B}$ of dimension 196883.
J. Tits proved that $\mathbb{M}$ is actually the full automorphism group of $\mathbb{B}$.

A bit earlier, J. McKay, J. Thompson, J. Conway and S. Norton had discovered astounding "numerology" culminating in the "monstrous moonshine" conjectures concerning the not-yet-proved-to-exist Monster $\mathbb{M}$, namely:

There should exist an infinite-dimensional $\mathbb{Z}$-graded module $V=\oplus_{n \geq-1} V_{n}$ for $\mathbb{M}$ such that

where

$$
J(q)=q^{-1}+0+196884 q+21493760 q^{2}
$$

Note: $196884=196883+1$ - McKay’s initial observation. Here J(q) a very well known classical modular function.

A bit earlier, J. McKay, J. Thompson, J. Conway and S. Norton had discovered astounding "numerology" culminating in the "monstrous moonshine" conjectures concerning the not-yet-proved-to-exist Monster $\mathbb{M}$, namely:

There should exist an infinite-dimensional $\mathbb{Z}$-graded module $V=\oplus_{n \geq-1} V_{n}$ for $\mathbb{M}$ such that

$$
\sum_{n \geq-1}\left(\operatorname{dim} V_{n}\right) q^{n}=J(q),
$$

where

$$
J(q)=q^{-1}+0+196884 q+21493760 q^{2}+\ldots
$$

A bit earlier, J. McKay, J. Thompson, J. Conway and S. Norton had discovered astounding "numerology" culminating in the "monstrous moonshine" conjectures concerning the not-yet-proved-to-exist Monster $\mathbb{M}$, namely:

There should exist an infinite-dimensional $\mathbb{Z}$-graded module $V=\oplus_{n \geq-1} V_{n}$ for $\mathbb{M}$ such that

$$
\sum_{n \geq-1}\left(\operatorname{dim} V_{n}\right) q^{n}=J(q),
$$

where

$$
J(q)=q^{-1}+0+196884 q+21493760 q^{2}+\ldots
$$

Note: 196884 = $196883+1$ - McKay's initial observation. Here J(q) a very well known classical modular function.

Proving this conjecture would give a remarkable connection between classical number theory and "nonclassical" sporadic group theory.

> After Griess constructed $\mathbb{M}$, I. Frenkel, J. Lepowsky and A. Meurman proved the McKayThompson conjecture- that there should exist a natural infinite-dimensional $\mathbb{Z}$-graded $\mathbb{M}$-module $V$ satisfying the condition above.

This was done by means of an explicit (and necessarily elaborate) construction of such a structure $V$, called the "moonshine module $V$ The construction heavily uses a network of types of vertex operators and their algebraic structure and relations, yielding the structure $V^{\natural}$ and a certain "algebra of vertex operators" acting on it, in such a way that the Monster is realized as the automorphism group of this algebra of vertex operators.

Proving this conjecture would give a remarkable connection between classical number theory and "nonclassical" sporadic group theory.

After Griess constructed M, I. Frenkel, J. Lepowsky and A. Meurman proved the McKayThompson conjecture- that there should exist a natural infinite-dimensional $\mathbb{Z}$-graded $\mathbb{M}$-module $V$ satisfying the condition above.

This was done by means of an explicit (and necessarily elaborate) construction of such a structure $V$, called the "moonshine module The construction heavily uses a network of types of vertex operators and their algebraic structure and relations, yielding the structure and a certain "algebra of vertex operators" acting on it, in such a way that the Monster is realized as the automorphism group of this algebra of vertex operators.

Proving this conjecture would give a remarkable connection between classical number theory and "nonclassical" sporadic group theory.

After Griess constructed $\mathbb{M}$, I. Frenkel, J. Lepowsky and A. Meurman proved the McKayThompson conjecture- that there should exist a natural infinite-dimensional $\mathbb{Z}$-graded $\mathbb{M}$-module $V$ satisfying the condition above.

This was done by means of an explicit (and necessarily elaborate) construction of such a structure $V$, called the "moonshine module $V$ "
and their algebraic structure and relations, and a certain "algebra of vertex operators" acting on it, in such a way
that the Monster is realized as the automorphism group of this algebra
of vertex operators.

Proving this conjecture would give a remarkable connection between classical number theory and "nonclassical" sporadic group theory.

After Griess constructed $\mathbb{M}$, I. Frenkel, J. Lepowsky and A. Meurman proved the McKayThompson conjecture- that there should exist a natural infinite-dimensional $\mathbb{Z}$-graded $\mathbb{M}$-module $V$ satisfying the condition above.

This was done by means of an explicit (and necessarily elaborate) construction of such a structure $V$, called the "moonshine module $V^{\natural}$ " The construction heavily uses a network of types of vertex operators and their algebraic structure and relations, yielding the structure $V^{\natural}$ and a certain "algebra of vertex operators" acting on it, in such a way that the Monster is realized as the automorphism group of this algebra of vertex operators.

The Monster,finite group, was now understood in terms of a natural infinite-dimensional structure.

Moreover, the 196883-dimensional algebra $\mathbb{B}$ finds itself embedded inside $V^{\natural}$ in a 196884-dimensional enlargement $\mathcal{B}$ of $\mathbb{B}$, with an identity element adjoined, and this identity element of gives rise to a copy of the Virasoro Lie algebra acting on $V^{\natural}$.

The Monster,finite group, was now understood in terms of a natural infinite-dimensional structure.

Moreover, the 196883-dimensional algebra $\mathbb{B}$ finds itself embedded inside $V^{\natural}$ in a 196884-dimensional enlargement $\mathcal{B}$ of $\mathbb{B}$, with an identity element adjoined, and this identity element of gives rise to a copy of the Virasoro Lie algebra acting on $V^{\natural}$.

## Outline

(1) Vertex algebras

- Formal Calculus
- Locality
- Vertex Algebras
- Structure of VA
(2) Vertex algebras
- Other equivalent definitions of vertex algebras


## Formal Calculus

## We considered formal expressions called formal distributions in the

 indeterminates $z, w, \ldots$ with values in $U$
where $a_{m, n, \ldots}$ are elements of a vector space $U$ over $\mathbb{C}$.
They form a vector space over $\mathbb{C}$ denoted by

$$
U\left[\left[z, z^{-1}, w, w^{-1}, \ldots\right]\right] .
$$

## Formal Calculus

We considered formal expressions called formal distributions in the indeterminates $z, w, \ldots$ with values in $U$

$$
\sum_{m, n, \ldots \in \mathbb{Z}} a_{m, n, \ldots} z^{n} w^{m} \ldots
$$

where $a_{m, n, \ldots}$ are elements of a vector space $U$ over $\mathbb{C}$.
They form a vector space over $\mathbb{C}$ denoted by


## Formal Calculus

We considered formal expressions called formal distributions in the indeterminates $z, w, \ldots$ with values in $U$

$$
\sum_{m, n, \ldots \in \mathbb{Z}} a_{m, n, \ldots} z^{n} w^{m} \ldots
$$

where $a_{m, n, \ldots}$ are elements of a vector space $U$ over $\mathbb{C}$.
They form a vector space over $\mathbb{C}$ denoted by

$$
U\left[\left[z, z^{-1}, w, w^{-1}, \ldots\right]\right] .
$$

We can always multiply a formal distribution and a Laurent polynomial (provided that product of coefficients is defined), but cannot in general multiply two formal distributions.

Each time when a product of two formal distribution occurs, we need to check that it converges in the algebraic sense, i.e. the coefficient of each monomial $z^{m} w^{n} \ldots$ is a finite (or convergent) sum.

We can always multiply a formal distribution and a Laurent polynomial (provided that product of coefficients is defined), but cannot in general multiply two formal distributions.

Each time when a product of two formal distribution occurs, we need to check that it converges in the algebraic sense, i.e. the coefficient of each monomial $z^{m} w^{n} \ldots$ is a finite (or convergent) sum.

## Examples:


(ii) $\left(\sum_{n \geq 0} \frac{z^{n}}{2^{n}}\right)\left(\sum_{n \leq 0} z^{n}\right)$ (coefficients in this series are convergent, we do not allow this)
(iii) $\left(\sum_{n \geq 0} z^{n}\right)(1-x)\left(\sum_{n} z^{n}\right)=0$ ???????

## Examples:

(i) $\left(\sum_{n \geq 0} z^{n}\right)\left(\sum_{n \leq 0} z^{n}\right)$
(ii) $\left(\sum_{n \geq 0} \frac{z^{n}}{2^{n}}\right)\left(\sum_{n \leq 0} z^{n}\right)$ (coefficients in this series are convergent, we do not allow this)
(iii) $\left(\sum_{n \geq 0} z^{n}\right)(1-x)\left(\sum_{n} z^{n}\right)=0$ ???????

Examples:
(i) $\left(\sum_{n \geq 0} z^{n}\right)\left(\sum_{n \leq 0} z^{n}\right)$
(ii) $\left(\sum_{n \geq 0} \frac{z^{n}}{2^{n}}\right)\left(\sum_{n \leq 0} z^{n}\right)$ (coefficients in this series are convergent, we do not allow this)
(iii) $\left(\sum_{n \geq 0} z^{n}\right)(1-x)\left(\sum_{n} z^{n}\right)=0$ ???????

Examples:
(i) $\left(\sum_{n \geq 0} z^{n}\right)\left(\sum_{n \leq 0} z^{n}\right)$
(ii) $\left(\sum_{n \geq 0} \frac{z^{n}}{2^{n}}\right)\left(\sum_{n \leq 0} z^{n}\right)$ (coefficients in this series are convergent, we do not allow this)
(iii) $\left(\sum_{n \geq 0} z^{n}\right)(1-x)\left(\sum_{n} z^{n}\right)=0$ ???????

Given a formal distribution $a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}$, define the residue by the usual formula

$$
\operatorname{Res}_{z} a(z)=a_{-1} .
$$

Since $\operatorname{Res}_{z} \partial_{z} a(z)=0$, we have the usual integration by parts formula (provided that $a b$ is defined):

## $\operatorname{Res}_{z} \partial_{z} a(z) b(z)=-\operatorname{Res}_{z} a(z) \partial_{z} b(z)$

Here and further $\partial a(z)=\sum_{n \in \mathbb{Z}} a_{n} n z^{n-1}$ is the derivative of $a(z)$.

Given a formal distribution $a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}$, define the residue by the usual formula

$$
\operatorname{Res}_{z} a(z)=a_{-1} .
$$

Since $\operatorname{Res}_{z} \partial_{z} a(z)=0$, we have the usual integration by parts formula (provided that $a b$ is defined):

## $\operatorname{Res}_{z} \partial_{z} a(z) b(z)=-\operatorname{Res}_{z} a(z) \partial_{z} b(z)$

Here and further $\partial a(z)=\sum_{n \in \mathbb{Z}} a_{n} n z^{n-1}$ is the derivative of $a(z)$.

Given a formal distribution $a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}$, define the residue by the usual formula
$\operatorname{Res}_{z} a(z)=a_{-1}$.

Since $\operatorname{Res}_{z} \partial_{z} a(z)=0$, we have the usual integration by parts formula (provided that $a b$ is defined):

$$
\operatorname{Res}_{z} \partial_{z} a(z) b(z)=-\operatorname{Res}_{z} a(z) \partial_{z} b(z)
$$

Given a formal distribution $a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}$, define the residue by the usual formula
$\operatorname{Res}_{z} a(z)=a_{-1}$.

Since $\operatorname{Res}_{z} \partial_{z} a(z)=0$, we have the usual integration by parts formula (provided that $a b$ is defined):

$$
\operatorname{Res}_{z} \partial_{z} a(z) b(z)=-\operatorname{Res}_{z} a(z) \partial_{z} b(z)
$$

Here and further $\partial a(z)=\sum_{n \in \mathbb{Z}} a_{n} n z^{n-1}$ is the derivative of $a(z)$.

Let $\mathbb{C}\left[z, z^{-1}\right]$ denote the algebra of Laurent polynomials in $z$.

## We have a non-degenerate pairing

$$
U\left[\left[z, z^{-1}\right]\right] \times \mathbb{C}\left[z, z^{-1}\right] \longrightarrow U
$$

$$
f \times \phi \mapsto,\langle f, \phi\rangle=\operatorname{Res}_{z} f(z) \phi(z),
$$

hence the Laurent polynomials should be viewed as "test functions" for the formal distributions.

Excersice: Formal distributions $a(z)$ and $b(z)$ are equal iff $\langle a(z), \phi(z)\rangle=\langle b(z), \phi(z)\rangle$ for any test function $\phi \in \mathbb{C}\left[z, z^{-1}\right]$.

Let $\mathbb{C}\left[z, z^{-1}\right]$ denote the algebra of Laurent polynomials in $z$.

We have a non-degenerate pairing

$$
\begin{aligned}
U\left[\left[z, z^{-1}\right]\right] x \mathbb{C}\left[z, z^{-1}\right] & \longrightarrow U \\
f \times \phi & \mapsto,\langle f, \phi\rangle=\operatorname{Res}_{z} f(z) \phi(z)
\end{aligned}
$$

hence the Laurent polynomials should be viewed as "test functions" for the formal distributions.

Excersice: Formal distributions $a(z)$ and $b(z)$ are equal iff $\langle a(z), \phi(z)\rangle=\langle b(z), \phi(z)\rangle$ for any test function $\phi \in \mathbb{C}\left[z, z^{-1}\right]$.

Let $\mathbb{C}\left[z, z^{-1}\right]$ denote the algebra of Laurent polynomials in $z$.

We have a non-degenerate pairing

$$
\begin{aligned}
U\left[\left[z, z^{-1}\right]\right] x \mathbb{C}\left[z, z^{-1}\right] & \longrightarrow U \\
f \times \phi & \mapsto,\langle f, \phi\rangle=\operatorname{Res}_{z} f(z) \phi(z)
\end{aligned}
$$

hence the Laurent polynomials should be viewed as "test functions" for the formal distributions.

Excersice: Formal distributions $a(z)$ and $b(z)$ are equal iff
$\langle a(z), \phi(z)\rangle=\langle b(z), \phi(z)\rangle$ for any test function $\phi \in \mathbb{C}\left[z, z^{-1}\right]$.

Let $\mathbb{C}\left[z, z^{-1}\right]$ denote the algebra of Laurent polynomials in $z$.

We have a non-degenerate pairing

$$
\begin{aligned}
U\left[\left[z, z^{-1}\right]\right] x \mathbb{C}\left[z, z^{-1}\right] & \longrightarrow U \\
f \times \phi & \mapsto,\langle f, \phi\rangle=\operatorname{Res}_{z} f(z) \phi(z)
\end{aligned}
$$

hence the Laurent polynomials should be viewed as "test functions" for the formal distributions.

Excersice: Formal distributions $a(z)$ and $b(z)$ are equal iff $\langle a(z), \phi(z)\rangle=\langle b(z), \phi(z)\rangle$ for any test function $\phi \in \mathbb{C}\left[z, z^{-1}\right]$.

We introduce the formal delta function $\delta(z, w)$ as the following formal distribution in $z$ and $w$ with values in $\mathbb{C}$ :

$$
\delta(z, w)=z^{-1} \sum_{n \in \mathbb{Z}}\left(\frac{w}{z}\right)^{n}
$$

## Notation: Given a rational function $R(z, w)$ with poles only at $z=0$, $w=0$ and $|z|=|w|$, we denote by $\iota_{z, w} R\left(\right.$ resp. $\left.\iota_{z, w} R\right)$ the power series expansion of $R$ in the domain $|z|>|w|($ resp. $|z|<|w|)$.

We introduce the formal delta function $\delta(z, w)$ as the following formal distribution in $z$ and $w$ with values in $\mathbb{C}$ :

$$
\delta(z, w)=z^{-1} \sum_{n \in \mathbb{Z}}\left(\frac{w}{z}\right)^{n}
$$

Notation: Given a rational function $R(z, w)$ with poles only at $z=0$, $w=0$ and $|z|=|w|$, we denote by $\iota_{z, w} R\left(\right.$ resp. $\left.\iota_{z, w} R\right)$ the power series expansion of $R$ in the domain $|z|>|w|($ resp. $|z|<|w|)$.

## For example, we have for $j \in \mathbb{Z}_{+}$:

$$
\begin{gathered}
\iota_{z, w} \frac{1}{(z-w)^{j+1}}=\sum_{m=0}^{\infty}\binom{m}{j} z^{-m-1} w^{m-j}, \\
\iota_{w, z} \frac{1}{(z-w)^{j+1}}=-\sum_{m=-1}^{-\infty}\binom{m}{j} z^{-m-1} w^{m-j},
\end{gathered}
$$

## Thus

$\partial_{w}^{(j)} \delta(z, w)=\iota_{z, w} \frac{1}{(z-w)^{j+1}}-\iota_{w, z} \frac{1}{(z-w)^{j+1}}=\sum_{m \in \mathbb{Z}}^{\infty}\binom{m}{j} z^{-m-1} w^{m-j}$

For example, we have for $j \in \mathbb{Z}_{+}$:

$$
\begin{gathered}
\iota_{z, w} \frac{1}{(z-w)^{j+1}}=\sum_{m=0}^{\infty}\binom{m}{j} z^{-m-1} w^{m-j}, \\
\iota_{w, z} \frac{1}{(z-w)^{j+1}}=-\sum_{m=-1}^{-\infty}\binom{m}{j} z^{-m-1} w^{m-j},
\end{gathered}
$$

For example, we have for $j \in \mathbb{Z}_{+}$:

$$
\begin{gathered}
\iota_{z, w} \frac{1}{(z-w)^{j+1}}=\sum_{m=0}^{\infty}\binom{m}{j} z^{-m-1} w^{m-j}, \\
\iota_{w, z} \frac{1}{(z-w)^{j+1}}=-\sum_{m=-1}^{-\infty}\binom{m}{j} z^{-m-1} w^{m-j},
\end{gathered}
$$

Thus

$$
\partial_{w}^{(j)} \delta(z, w)=\iota_{z, w} \frac{1}{(z-w)^{j+1}}-\iota_{w, z} \frac{1}{(z-w)^{j+1}}=\sum_{m \in \mathbb{Z}}^{\infty}\binom{m}{j} z^{-m-1} w^{m-j}
$$

Properties of the formal delta function:
a) For any formal distribution $f(z) \in U\left[\left[z, z^{-1}\right]\right]$ one has:
$\operatorname{Res}_{z} f(z) \delta(z, w)=f(w)$.
b) $\delta(z, w)=\delta(w, z)$.
c) $\partial_{z} \delta(z, w)=-\partial_{w} \delta(z, w)$.
d) $(z-w) \partial_{w}^{(j+1)} \delta(z, w)=\partial_{w}^{(j)} \delta(z, w)$ for $j \in \mathbb{Z}_{+}$.
e) $(z-w)^{j+1} \partial_{w}^{(j)} \delta(z, w)=0$ for $j \in \mathbb{Z}_{+}$

Properties of the formal delta function:
a) For any formal distribution $f(z) \in U\left[\left[z, z^{-1}\right]\right]$ one has:

$$
\operatorname{Res}_{z} f(z) \delta(z, w)=f(w)
$$

b) $\delta(z, w)=\delta(w, z)$.
c) $\partial_{z} \delta(z, w)=-\partial_{w} \delta(z, w)$.
d) $(z-w) \partial_{w}^{(j+1)} \delta(z, w)=\partial_{w}^{(j)} \delta(z, w)$ for $j \in \mathbb{Z}_{+}$. e) $(z-w)^{j+1} \partial_{w}^{(j)} \delta(z, w)=0$ for $j \in \mathbb{Z}_{+}$

Properties of the formal delta function:
a) For any formal distribution $f(z) \in U\left[\left[z, z^{-1}\right]\right]$ one has:
$\operatorname{Res}_{z} f(z) \delta(z, w)=f(w)$.
b) $\delta(z, w)=\delta(w, z)$.
c) $\partial_{z} \delta(z, w)=-\partial_{w} \delta(z, w)$.
d) $(z-w) \partial_{w}^{(j+1)} \delta(z, w)=\partial_{w}^{(j)} \delta(z, w)$ for $j \in \mathbb{Z}_{+}$.

Properties of the formal delta function:
a) For any formal distribution $f(z) \in U\left[\left[z, z^{-1}\right]\right]$ one has:
$\operatorname{Res}_{z} f(z) \delta(z, w)=f(w)$.
b) $\delta(z, w)=\delta(w, z)$.
c) $\partial_{z} \delta(z, w)=-\partial_{w} \delta(z, w)$.
d) $(z-w) \partial_{w}^{(j+1)} \delta(z, w)=\partial_{w}^{(j)} \delta(z, w)$ for $j \in \mathbb{Z}_{+}$.

Properties of the formal delta function:
a) For any formal distribution $f(z) \in U\left[\left[z, z^{-1}\right]\right]$ one has:
$\operatorname{Res}_{z} f(z) \delta(z, w)=f(w)$.
b) $\delta(z, w)=\delta(w, z)$.
c) $\partial_{z} \delta(z, w)=-\partial_{w} \delta(z, w)$.
d) $(z-w) \partial_{w}^{(j+1)} \delta(z, w)=\partial_{w}^{(j)} \delta(z, w)$ for $j \in \mathbb{Z}_{+}$.
e) $(z-w)^{j+1} \partial_{w}^{(j)} \delta(z, w)=0$ for $j \in \mathbb{Z}_{+}$

## Outline

(1) Vertex algebras

- Formal Calculus
- Locality
- Vertex Algebras
- Structure of VA
(2) Vertex algebras
- Other equivalent definitions of vertex algebras


## Question: Characterize the null space of the operator multiplication by

 $(z-w)^{N}$ with $N \geq 1$ in $U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$.It is shown in the literature that this space is exactly


Namely, let $N \geq 1$ and $a(z, w) \in U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$. Then

$$
(z-m)^{N} a(z, w)=0
$$

if and only if

where

Question: Characterize the null space of the operator multiplication by $(z-w)^{N}$ with $N \geq 1$ in $U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$.
It is shown in the literature that this space is exactly

$$
\sum_{j=0}^{N-1} \partial_{w}^{(j)} \delta(z, w) U\left[\left[w, w^{-1}\right]\right]
$$

Namely, let $N \geq 1$ and $a(z, w) \in U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$. Then

$$
(z-w)^{N} a(z, w)=0
$$

if and only if

where

Question: Characterize the null space of the operator multiplication by $(z-w)^{N}$ with $N \geq 1$ in $U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$.
It is shown in the literature that this space is exactly

$$
\sum_{j=0}^{N-1} \partial_{w}^{(j)} \delta(z, w) U\left[\left[w, w^{-1}\right]\right] .
$$

Namely, let $N \geq 1$ and $a(z, w) \in U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$.

$$
(z-w)^{N} a(z, w)=0
$$

if and only if

where

Question: Characterize the null space of the operator multiplication by $(z-w)^{N}$ with $N \geq 1$ in $U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$.
It is shown in the literature that this space is exactly

$$
\sum_{j=0}^{N-1} \partial_{w}^{(j)} \delta(z, w) U\left[\left[w, w^{-1}\right]\right] .
$$

Namely, let $N \geq 1$ and $a(z, w) \in U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$. Then

$$
(z-w)^{N} a(z, w)=0
$$

if and only if

where

Question: Characterize the null space of the operator multiplication by $(z-w)^{N}$ with $N \geq 1$ in $U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$.
It is shown in the literature that this space is exactly

$$
\sum_{j=0}^{N-1} \partial_{w}^{(j)} \delta(z, w) U\left[\left[w, w^{-1}\right]\right] .
$$

Namely, let $N \geq 1$ and $a(z, w) \in U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$. Then

$$
(z-w)^{N} a(z, w)=0
$$

if and only if

$$
a(z, w)=\sum_{j=0}^{N-1} \partial_{w}^{(j)} \delta(z, w) c^{j}(w)
$$

where

Question: Characterize the null space of the operator multiplication by $(z-w)^{N}$ with $N \geq 1$ in $U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$.
It is shown in the literature that this space is exactly

$$
\sum_{j=0}^{N-1} \partial_{w}^{(j)} \delta(z, w) U\left[\left[w, w^{-1}\right]\right] .
$$

Namely, let $N \geq 1$ and $a(z, w) \in U\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$. Then

$$
(z-w)^{N} a(z, w)=0
$$

if and only if

$$
a(z, w)=\sum_{j=0}^{N-1} \partial_{w}^{(j)} \delta(z, w) c^{j}(w)
$$

where

$$
c^{j}(w)=\operatorname{Res}_{z} a(z, w)(z-w)^{n}
$$

We shall often write a formal distribution in the form

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}, \quad a(z, w)=\sum_{n \in \mathbb{Z}} a_{n, m} z^{-n-1} w^{-m-1}, \text { etc. }
$$

This is a natural thing to do since $a_{n}=\operatorname{Res}_{z} a(z) z^{n}$. Then the expansion

is equivalent to


We shall often write a formal distribution in the form

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}, \quad a(z, w)=\sum_{n \in \mathbb{Z}} a_{n, m} z^{-n-1} w^{-m-1}, \text { etc. }
$$

This is a natural thing to do since $a_{n}=\operatorname{Res}_{z} a(z) z^{n}$. Then the expansion

$$
a(z, w)=\sum_{j=0}^{N-1} \partial_{w}^{(j)} \delta(z, w) c^{j}(w)
$$

is equivalent to

$$
a_{m, n}=\sum_{j=0}^{N-1}\binom{m}{j} c_{m+n-j}^{j}
$$

by comparing coefficients.

A formal distribution $a(z, w)$ is called local if

$$
(z-w)^{N} a(z, w)=0 \quad \text { for } N \gg 0
$$

## Thus any local formal distribution $a(z, w)$ has the expansion



This expansion is called the OPE expansion of $a(z, w)$ and the $c^{j}(w)$ are called the OPE coefficients of $a(z, w)$.

A formal distribution $a(z, w)$ is called local if

$$
(z-w)^{N} a(z, w)=0 \quad \text { for } N \gg 0
$$

Thus any local formal distribution $a(z, w)$ has the expansion

$$
a(z, w)=\sum_{j=0}^{N-1} \partial_{w}^{(j)} \delta(z, w) c^{j}(w)
$$

This expansion is called the OPE expansion of $a(z, w)$ and the $c^{j}(w)$ are called the OPE coefficients of $a(z, w)$.

A formal distribution $a(z, w)$ is called local if

$$
(z-w)^{N} a(z, w)=0 \quad \text { for } N \gg 0
$$

Thus any local formal distribution $a(z, w)$ has the expansion

$$
a(z, w)=\sum_{j=0}^{N-1} \partial_{w}^{(j)} \delta(z, w) c^{j}(w)
$$

This expansion is called the OPE expansion of $a(z, w)$ and the $c^{j}(w)$ are called the OPE coefficients of $a(z, w)$.

The most important example of an associative algebra is the endomorphism algebra End $V$ of a vector space $V$,

$[a, b]=a b-b a$,
where $a, b \in U$.

Now, consider a Lie algebra $\mathfrak{g}$.

Two formal distributions $a(z)$ and $b(z)$ with values in a Lie algebra $\mathfrak{g}$ are called mutually local (or simply local, or form a local pair) if the formal distribution $[a(z), b(w)] \in \mathfrak{g}\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$ is local, i.e. if

$$
(z-w)^{N}[a(z), b(w)]=0 \quad \text { for } N \gg 0
$$

Differentiating both sides by $z$ and multiplying by $(z-w)$, we see that the locality of $a(z)$ and $b(z)$ implies the locality of $\partial a(z)$, and $p(z)$. $\overline{\underline{\underline{z}}}$

The most important example of an associative algebra is the endomorphism algebra End $V$ of a vector space $V$,

One defines the bracket [, ] on an associative algebra $U$ by letting

$$
[a, b]=a b-b a,
$$

where $a, b \in U$.
Now, consider a Lie algebra g.
Two formal distributions $a(z)$ and $b(z)$ with values in a Lie algebra $\mathfrak{g}$ are called mutually local (or simply local, or form a local pair) if the formal distribution $\left.\left[a(z), b^{\prime}(w)\right] \in g^{[ }\left[z, z^{-1}, w, w^{-1}\right]\right]$ is local, i.e. if

$$
(z-w)^{N}[a(z), b(w)]=0 \quad \text { for } N \gg 0 .
$$

The most important example of an associative algebra is the endomorphism algebra End $V$ of a vector space $V$,

One defines the bracket [, ] on an associative algebra $U$ by letting

$$
[a, b]=a b-b a,
$$

where $a, b \in U$.
Now, consider a Lie algebra $\mathfrak{g}$.
Two formal distributions $a(z)$ and $b(z)$ with values in a Lie algebra $g$ are called mutually local (or simply local, or form a local pair) if the formal distribution $[a(z), b(w)] \in \mathfrak{g}\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$ is local, i.e. if

$$
(z-w)^{N}[a(z), b(w)]=0 \quad \text { for } N \gg 0 .
$$

The most important example of an associative algebra is the endomorphism algebra End $V$ of a vector space $V$,

One defines the bracket [, ] on an associative algebra $U$ by letting

$$
[a, b]=a b-b a
$$

where $a, b \in U$.
Now, consider a Lie algebra $\mathfrak{g}$.
Two formal distributions $a(z)$ and $b(z)$ with values in a Lie algebra $\mathfrak{g}$ are called mutually local (or simply local, or form a local pair) if the formal distribution $[a(z), b(w)] \in \mathfrak{g}\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$ is local, i.e. if

$$
(z-w)^{N}[a(z), b(w)]=0 \quad \text { for } N \gg 0
$$

The most important example of an associative algebra is the endomorphism algebra End $V$ of a vector space $V$,

One defines the bracket [, ] on an associative algebra $U$ by letting

$$
[a, b]=a b-b a
$$

where $a, b \in U$.
Now, consider a Lie algebra $\mathfrak{g}$.
Two formal distributions $a(z)$ and $b(z)$ with values in a Lie algebra $\mathfrak{g}$ are called mutually local (or simply local, or form a local pair) if the formal distribution $[a(z), b(w)] \in \mathfrak{g}\left[\left[z, z^{-1}, w, w^{-1}\right]\right]$ is local, i.e. if

$$
(z-w)^{N}[a(z), b(w)]=0 \quad \text { for } N \gg 0
$$

Differentiating both sides by $z$ and multiplying by $(z-w)$, we see that the locality of $a(z)$ and $b(z)$ implies the locality of $\partial a(z)$ and $b(z)$.

Fix a vector space $V$ (the space of states). A formal distribution

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}
$$

with values in the ring End $V$ (i.e., $a_{n} \in$ End $V$ ) is called a field if for
any $v \in V$ one has:


This means that $a(z) v$ is a formal Laurent series in $z$ (i.e.,
$\left.a(z) v \in V[[z]]\left[z^{-1}\right]\right)$.

Fix a vector space $V$ (the space of states). A formal distribution

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}
$$

with values in the ring End $V$ (i.e., $a_{n} \in$ End $V$ ) is called a field if for any $v \in V$ one has:

$$
a_{n} v=0 \quad \text { for } n \gg 0
$$

## This means that $a(z) v$ is a formal Laurent series in $z$ (i.e., $\left.a(z) v \in V[[z]]\left[z^{-1}\right]\right)$.

Fix a vector space $V$ (the space of states). A formal distribution

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}
$$

with values in the ring End $V$ (i.e., $a_{n} \in$ End $V$ ) is called a field if for any $v \in V$ one has:

$$
a_{n} v=0 \quad \text { for } n \gg 0
$$

This means that $a(z) v$ is a formal Laurent series in $z$ (i.e., $\left.a(z) v \in V[[z]]\left[z^{-1}\right]\right)$.

The normally ordered product of two fields $a(z)$ and $b(z)$ is defined by

$$
: a(z) b(z):=a(z)_{+} b(z)+b(z) a(z)_{-}: .
$$

This is a field, since given $v \in V, b(z) v(r e s p . a(z)-v)$ is a formal Laurent series (resp. a Laurent polynomial) in $z$, hence $a(z)_{+} b(z) v$ (resp. b(z)a(z) -v) is a formal Laurent series in $z$.

Thus, the space of fields forms an algebra with respect to the normally ordered product (which is in general neither commutative nor associative).

The normally ordered product of two fields $a(z)$ and $b(z)$ is defined by

$$
: a(z) b(z):=a(z)_{+} b(z)+b(z) a(z)_{-}: .
$$

This is a field, since given $v \in V, b(z) v$ (resp. $a(z)-v)$ is a formal Laurent series (resp. a Laurent polynomial) in $z$, hence $a(z)_{+} b(z) v$ (resp. $b(z) a(z)-v)$ is a formal Laurent series in $z$.

Thus, the space of fields forms an algebra with respect to the normally ordered product (which is in general neither commutative nor associative).

The normally ordered product of two fields $a(z)$ and $b(z)$ is defined by

$$
: a(z) b(z):=a(z)_{+} b(z)+b(z) a(z)_{-}: .
$$

This is a field, since given $v \in V, b(z) v$ (resp. $\left.a(z)_{-} v\right)$ is a formal Laurent series (resp. a Laurent polynomial) in $z$, hence $a(z)_{+} b(z) v$ (resp. $\left.b(z) a(z)_{-} v\right)$ is a formal Laurent series in $z$.

Thus, the space of fields forms an algebra with respect to the normally ordered product (which is in general neither commutative nor associative).

The derivative $\partial a(z)$ of a field $a(z)$ is again a field and $\partial$ is a derivation of the normally ordered product:

$$
\partial: a(z) b(z):=: \partial a(z) b(z):+: a(z) \partial b(z):
$$

since $(\partial a(z))_{ \pm}=\partial\left(a(z)_{ \pm}\right)$.

Given two fiels $a(z)$ and $b(z)$ define the $n$-th product between fields as:(for $n \in \mathbb{Z}$
$a(z){ }_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right)$

It is easy to check that for $n \in \mathbb{Z}_{+}$

$$
a(w)_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)]
$$

$a(z)_{-n-1} b(z)=: \partial^{(n)} a(z) b(z)$

The derivative $\partial a(z)$ of a field $a(z)$ is again a field and $\partial$ is a derivation of the normally ordered product:

$$
\partial: a(z) b(z):=: \partial a(z) b(z):+: a(z) \partial b(z):
$$

since $(\partial a(z))_{ \pm}=\partial\left(a(z)_{ \pm}\right)$.

Given two fiels $a(z)$ and $b(z)$ define the $n$-th product between fields as:(for $n \in \mathbb{Z}$

$$
a(z)_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right)
$$

$a(w)_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)]$,

The derivative $\partial a(z)$ of a field $a(z)$ is again a field and $\partial$ is a derivation of the normally ordered product:

$$
\partial: a(z) b(z):=: \partial a(z) b(z):+: a(z) \partial b(z):
$$

since $(\partial a(z))_{ \pm}=\partial\left(a(z)_{ \pm}\right)$.

Given two fiels $a(z)$ and $b(z)$ define the $n$-th product between fields as:(for $n \in \mathbb{Z}$

$$
a(z)_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right) .
$$

It is easy to check that for $n \in \mathbb{Z}_{+}$

$$
a(w)_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)]
$$

$a(z)_{-n-1} b(z)=: \partial^{(n)} a(z) b(z)$

The derivative $\partial a(z)$ of a field $a(z)$ is again a field and $\partial$ is a derivation of the normally ordered product:

$$
\partial: a(z) b(z):=: \partial a(z) b(z):+: a(z) \partial b(z):
$$

since $(\partial a(z))_{ \pm}=\partial\left(a(z)_{ \pm}\right)$.

Given two fiels $a(z)$ and $b(z)$ define the $n$-th product between fields as:(for $n \in \mathbb{Z}$

$$
a(z)_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right)
$$

It is easy to check that for $n \in \mathbb{Z}_{+}$

$$
\begin{gathered}
a(w)_{n} b(w)=\operatorname{Res}_{z}(z-w)^{n}[a(z), b(w)] \\
a(z)_{-n-1} b(z)=: \partial^{(n)} a(z) b(z):
\end{gathered}
$$

Dong's Lemma: If $a(z), b(z)$ and $c(z)$ are pairwise mutually local fields (resp. formal distributions), then $a(z)_{n} b(z)$ and $c(z)$ are mutually local fields (resp. formal distributions) for all $n \in \mathbb{Z}$ (resp. $n \in \mathbb{Z}_{+}$). In particular: $a(z) b(z)$ : and $c(z)$ are mutually local fields provided that $a(z), b(z)$ and $c(z)$ are.

We have that $g l f(V)$ is closed under all the products $a(z)_{n} b(z), n \in \mathbb{Z}$.
This is called the general linear field algebra.

Dong's Lemma: If $a(z), b(z)$ and $c(z)$ are pairwise mutually local fields (resp. formal distributions), then $a(z)_{n} b(z)$ and $c(z)$ are mutually local fields (resp. formal distributions) for all $n \in \mathbb{Z}$ (resp. $n \in \mathbb{Z}_{+}$). In particular: $a(z) b(z)$ : and $c(z)$ are mutually local fields provided that $a(z), b(z)$ and $c(z)$ are.

Let $g l f(V)$ denote the space (over $\mathbb{C}$ ) of all fields with values in End $V$.
We have that $g l f(V)$ is closed under all the products $a(z)_{n} b(z), n \in \mathbb{Z}$.
This is called the general linear field algebra.

Dong's Lemma: If $a(z), b(z)$ and $c(z)$ are pairwise mutually local fields (resp. formal distributions), then $a(z)_{n} b(z)$ and $c(z)$ are mutually local fields (resp. formal distributions) for all $n \in \mathbb{Z}$ (resp. $n \in \mathbb{Z}_{+}$). In particular: $a(z) b(z)$ : and $c(z)$ are mutually local fields provided that $a(z), b(z)$ and $c(z)$ are.

Let $g l f(V)$ denote the space (over $\mathbb{C}$ ) of all fields with values in End $V$.
We have that $g l f(V)$ is closed under all the products $a(z)_{n} b(z), n \in \mathbb{Z}$.
This is called the general linear field algebra.

Dong's Lemma: If $a(z), b(z)$ and $c(z)$ are pairwise mutually local fields (resp. formal distributions), then $a(z)_{n} b(z)$ and $c(z)$ are mutually local fields (resp. formal distributions) for all $n \in \mathbb{Z}$ (resp. $n \in \mathbb{Z}_{+}$). In particular : $a(z) b(z)$ : and $c(z)$ are mutually local fields provided that $a(z), b(z)$ and $c(z)$ are.

Let $g l f(V)$ denote the space (over $\mathbb{C}$ ) of all fields with values in End $V$.
We have that $g l f(V)$ is closed under all the products $a(z)_{n} b(z), n \in \mathbb{Z}$.
This is called the general linear field algebra.

Dong's Lemma: If $a(z), b(z)$ and $c(z)$ are pairwise mutually local fields (resp. formal distributions), then $a(z)_{n} b(z)$ and $c(z)$ are mutually local fields (resp. formal distributions) for all $n \in \mathbb{Z}$ (resp. $n \in \mathbb{Z}_{+}$). In particular : $a(z) b(z)$ : and $c(z)$ are mutually local fields provided that $a(z), b(z)$ and $c(z)$ are.

Let $g l f(V)$ denote the space (over $\mathbb{C}$ ) of all fields with values in End $V$.
We have that $g l f(V)$ is closed under all the products $a(z)_{n} b(z), n \in \mathbb{Z}$.
This is called the general linear field algebra.

A subspace $F$ of $g l f(V)$ containing the identity operator $I d_{V}$, and closed under all the products $n$-th products (then automatically $\left.\partial_{z} F \subset F\right)$ is called a linear field algebra.

A linear field algebra is called local if it consists of mutually local fields.
A subspace $F$ of $g l f(V)$ is a linear field algebra iff $I d_{V} \in F, \partial F \subset F, F$ is closed under normally ordered product $F$ is closed under OPE (i.e., all the OPE) are in F).

A subspace $F$ of $g l f(V)$ containing the identity operator $I d_{V}$, and closed under all the products $n$-th products (then automatically $\left.\partial_{z} F \subset F\right)$ is called a linear field algebra.

A linear field algebra is called local if it consists of mutually local fields.
A subspace $F$ of $g l f(V)$ is a linear field algebra iff $I d_{V} \in F, \partial F \subset F, F$
is closed under normally ordered product $F$ is closed under OPE (i.e., all the OPE) are in F).

A subspace $F$ of $g l f(V)$ containing the identity operator $I d_{V}$, and closed under all the products $n$-th products (then automatically $\left.\partial_{z} F \subset F\right)$ is called a linear field algebra.

A linear field algebra is called local if it consists of mutually local fields.
A subspace $F$ of $g l f(V)$ is a linear field algebra iff $I d_{V} \in F$,

A subspace $F$ of $g l f(V)$ containing the identity operator $I d_{V}$, and closed under all the products $n$-th products (then automatically $\left.\partial_{z} F \subset F\right)$ is called a linear field algebra.

A linear field algebra is called local if it consists of mutually local fields.
A subspace $F$ of $g l f(V)$ is a linear field algebra iff $I d_{V} \in F, \partial F \subset F$,

A subspace $F$ of $g l f(V)$ containing the identity operator $I d_{V}$, and closed under all the products $n$-th products (then automatically $\left.\partial_{z} F \subset F\right)$ is called a linear field algebra.

A linear field algebra is called local if it consists of mutually local fields.
A subspace $F$ of $g l f(V)$ is a linear field algebra iff $I d_{V} \in F, \partial F \subset F, F$ is closed under normally ordered product
all the OPE) are in F).

A subspace $F$ of $g l f(V)$ containing the identity operator $I d V$, and closed under all the products $n$-th products (then automatically $\left.\partial_{z} F \subset F\right)$ is called a linear field algebra.

A linear field algebra is called local if it consists of mutually local fields.
A subspace $F$ of $g l f(V)$ is a linear field algebra iff $I d_{V} \in F, \partial F \subset F, F$ is closed under normally ordered product $F$ is closed under OPE (i.e., all the OPE) are in F).

## Computing an OPE

## The Virasoro algebra is defined as the Lie algebra $\mathcal{L}$ with basis

$$
\left\{L_{n}: n \in \mathbb{Z}\right\} \cap\{c\}
$$

## equipped with the bracket relations

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{1}{12}\left(m^{3}-m\right) \delta_{m+n, 0} c
$$

together with the condition that $c$ is a central element of $\mathcal{L}$.

These relations indeed define a Lie algebra.

## Computing an OPE

The Virasoro algebra is defined as the Lie algebra $\mathcal{L}$ with basis

$$
\left\{L_{n}: n \in \mathbb{Z}\right\} \cap\{c\}
$$

equipped with the bracket relations

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{1}{12}\left(m^{3}-m\right) \delta_{m+n, 0} c
$$

together with the condition that $c$ is a central element of $\mathcal{L}$.

These relations indeed define a Lie algebra.

## Computing an OPE

The Virasoro algebra is defined as the Lie algebra $\mathcal{L}$ with basis

$$
\left\{L_{n}: n \in \mathbb{Z}\right\} \cap\{c\}
$$

equipped with the bracket relations

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{1}{12}\left(m^{3}-m\right) \delta_{m+n, 0} c
$$

together with the condition that $c$ is a central element of $\mathcal{L}$.

These relations indeed define a Lie algebra.

## Computing an OPE

The Virasoro algebra is defined as the Lie algebra $\mathcal{L}$ with basis

$$
\left\{L_{n}: n \in \mathbb{Z}\right\} \cap\{c\}
$$

equipped with the bracket relations

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{1}{12}\left(m^{3}-m\right) \delta_{m+n, 0} c
$$

together with the condition that $c$ is a central element of $\mathcal{L}$.

These relations indeed define a Lie algebra.

Consider the formal distribution

$$
L(z)=\sum_{n} L_{n} z^{-n-2}
$$

## The bracket defined above is equivalent to

$$
\begin{aligned}
{[L(z), L(w)]=} & \partial_{w} L(w) \delta(z, w)+2 L(w) \partial_{w} \delta(z, w) \\
& +\frac{C}{12} \partial^{3} \delta(z, w)
\end{aligned}
$$

Consider the formal distribution

$$
L(z)=\sum_{n} L_{n} z^{-n-2} .
$$

The bracket defined above is equivalent to

$$
\begin{aligned}
{[L(z), L(w)]=} & \partial_{w} L(w) \delta(z, w)+2 L(w) \partial_{w} \delta(z, w) \\
& +\frac{C}{12} \partial^{3} \delta(z, w)
\end{aligned}
$$

Thus this field is local.

Consider the formal distribution

$$
L(z)=\sum_{n} L_{n} z^{-n-2} .
$$

The bracket defined above is equivalent to

$$
\begin{aligned}
{[L(z), L(w)]=} & \partial_{w} L(w) \delta(z, w)+2 L(w) \partial_{w} \delta(z, w) \\
& +\frac{C}{12} \partial^{3} \delta(z, w)
\end{aligned}
$$

Thus this field is local.

## Outline

(1) Vertex algebras

- Formal Calculus
- Locality
- Vertex Algebras
- Structure of VA
(2) Vertex algebras
- Other equivalent definitions of vertex algebras

A vertex algebra is a vector space $V$ endowed with a vector $|0\rangle$ (vacuum vector),
> an endomorphism T (infinitesimal translation operator) and linear map of $V$ to the space of fields (the state-field correspondence)

such that the following axioms hold $(a, b \in V)$ :
(translation covariance): $[T, Y(a, z)]=\partial Y(a, z)$,
(vacuum): $T|0\rangle=0, Y(|0\rangle, z)=I d_{V},\left.Y(a, z)|0\rangle\right|_{z=0}=a$,
(locality): $(z-w)^{N}[Y(a, z), Y(b, w)]=0 \quad$ for $N \gg 0$.

## A vertex algebra is a vector space $V$ endowed with a vector $|0\rangle$ (vacuum vector), an endomorphism $T$ (infinitesimal translation operator) and linear map

 of $V$ to the space of fields (the state-field correspondence)
such that the following axioms hold $(a, b \in V)$ :
(translation covariance): $[T, Y(a, z)]=\partial Y(a, z)$,
(vacuum): $T|0\rangle=0, Y(|0\rangle, z)=I d_{V},\left.Y(a, z)|0\rangle\right|_{z=0}=a$,
(locality): $(z-w)^{N}[Y(a, z), Y(b, w)]=0 \quad$ for $N \gg 0$.

A vertex algebra is a vector space $V$ endowed with a vector $|0\rangle$ (vacuum vector), an endomorphism $T$ (infinitesimal translation operator) and linear map of $V$ to the space of fields (the state-field correspondence)

$$
a \mapsto Y(a, z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}, \quad a_{n} \in \operatorname{End} V
$$

such that the following axioms hold $(a, b \in V)$ :
(translation covariance): $[T, Y(a, z)]=\partial Y(a, z)$,
(vacuum): $T|0\rangle=0, Y(|0\rangle, z)=I d_{V},\left.Y(a, z)|0\rangle\right|_{z=0}=a$,
(locality): $(z-w)^{N}[Y(a, z), Y(b, w)]=0 \quad$ for $N \gg 0$.

A vertex algebra is a vector space $V$ endowed with a vector $|0\rangle$ (vacuum vector),
an endomorphism $T$ (infinitesimal translation operator) and linear map of $V$ to the space of fields (the state-field correspondence)

$$
a \mapsto Y(a, z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}, \quad a_{n} \in \text { End } V
$$

such that the following axioms hold $(a, b \in V)$ :
(translation covariance): $[T, Y(a, z)]=\partial Y(a, z)$,
(vacuum): $T|0\rangle=0, Y(|0\rangle, z)=I d_{V},\left.Y(a, z)|0\rangle\right|_{z=0}=a$,
(locality): $(z-w)^{N}[Y(a, z), Y(b, w)]=0 \quad$ for $N \gg 0$.

A vertex algebra is a vector space $V$ endowed with a vector $|0\rangle$ (vacuum vector), an endomorphism $T$ (infinitesimal translation operator) and linear map of $V$ to the space of fields (the state-field correspondence)

$$
a \mapsto Y(a, z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}, \quad a_{n} \in \text { End } V
$$

such that the following axioms hold $(a, b \in V)$ :
(translation covariance): $[T, Y(a, z)]=\partial Y(a, z)$,
(vacuum): $T|0\rangle=0, Y(|0\rangle, z)=I d_{V},\left.Y(a, z)|0\rangle\right|_{z=0}=a$,
(locality): $(z-w)^{N}[Y(a, z), Y(b, w)]=0 \quad$ for $N \gg 0$.

A vertex algebra is a vector space $V$ endowed with a vector $|0\rangle$ (vacuum vector),
an endomorphism $T$ (infinitesimal translation operator) and linear map of $V$ to the space of fields (the state-field correspondence)

$$
a \mapsto Y(a, z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}, \quad a_{n} \in \operatorname{End} V
$$

such that the following axioms hold $(a, b \in V)$ :
(translation covariance): $[T, Y(a, z)]=\partial Y(a, z)$,
(vacuum): $T|0\rangle=0, Y(|0\rangle, z)=I d_{V},\left.Y(a, z)|0\rangle\right|_{z=0}=a$,
(locality): $(z-w)^{N}[Y(a, z), Y(b, w)]=0 \quad$ for $N \gg 0$.

A vertex algebra is a vector space $V$ endowed with a vector $|0\rangle$ (vacuum vector),
an endomorphism $T$ (infinitesimal translation operator) and linear map of $V$ to the space of fields (the state-field correspondence)

$$
a \mapsto Y(a, z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-n-1}, \quad a_{n} \in \operatorname{End} V
$$

such that the following axioms hold $(a, b \in V)$ :
(translation covariance): $[T, Y(a, z)]=\partial Y(a, z)$,
(vacuum): $T|0\rangle=0, Y(|0\rangle, z)=I d_{V},\left.Y(a, z)|0\rangle\right|_{z=0}=a$,
(locality): $(z-w)^{N}[Y(a, z), Y(b, w)]=0 \quad$ for $N \gg 0$.

## Remarks:

1) Applying both sides of the translation invariance axiom to $|0\rangle$ we obtain that

$$
\begin{equation*}
T(a)=a_{-2}|0\rangle, \tag{*}
\end{equation*}
$$

from the 1st and 3rd parts of the vacuum axiom after letting $z=0$.
2) The bracket in translation covariance axiom is the usual bracket: $[T, Y]=T Y-Y T$, so that this axiom says

$$
\left[T, a_{n}\right]=-n a_{n-1}
$$

## Remarks:

1) Applying both sides of the translation invariance axiom to $|0\rangle$ we obtain that

$$
T(a)=a_{-2}|0\rangle, \quad(*)
$$

from the 1st and 3rd parts of the vacuum axiom after letting $z=0$.
2) The bracket in translation covariance axiom is the usual bracket:
$[T, Y]=T Y-Y T$, so that this axiom says
$\left[T, a_{n}\right]=-n a_{n-1}$

## Remarks:

1) Applying both sides of the translation invariance axiom to $|0\rangle$ we obtain that

$$
T(a)=a_{-2}|0\rangle, \quad(*)
$$

from the 1st and 3rd parts of the vacuum axiom after letting $z=0$.
2) The bracket in translation covariance axiom is the usual bracket:
$[T, Y]=T Y-Y T$, so that this axiom says

$$
\left[T, a_{n}\right]=-n a_{n-1}
$$

## Remarks:

1) Applying both sides of the translation invariance axiom to $|0\rangle$ we obtain that

$$
T(a)=a_{-2}|0\rangle, \quad(*)
$$

from the 1st and 3rd parts of the vacuum axiom after letting $z=0$.
2) The bracket in translation covariance axiom is the usual bracket:
$[T, Y]=T Y-Y T$, so that this axiom says

$$
\left[T, a_{n}\right]=-n a_{n-1}
$$

3) The first of the vacuum axioms says that $|0\rangle_{n}=\delta_{n,-1}$ and the second part says that

$$
a_{n}|0\rangle=0 \quad \text { for } n \geq 0, \quad a_{-1}|0\rangle=a
$$

## 4) Now, applying $T$ to both sides of $(*) n-1$ times, and using

 $\left[T, a_{n}\right]=-n a_{n-i}$ and $T|0\rangle=0$, we obtain$$
T^{(n)}(a)=a_{-n-1}|0\rangle
$$

which is equivalent to

$$
Y(a, z)|0\rangle=e^{z T}(a)
$$

3) The first of the vacuum axioms says that $|0\rangle_{n}=\delta_{n,-1}$ and the second part says that

$$
a_{n}|0\rangle=0 \quad \text { for } n \geq 0, \quad a_{-1}|0\rangle=a
$$

4) Now, applying $T$ to both sides of $(*) n-1$ times, and using
$\left[T, a_{n}\right]=-n a_{n-i}$ and $T|0\rangle=0$, we obtain

$$
T^{(n)}(a)=a_{-n-1}|0\rangle
$$

which is equivalent to

$$
Y(a, z)|0\rangle=e^{z T}(a)
$$

## Two rather abstract examples.

## Example 1)A vertex algebra $V$ is called holomorphic if $a_{n}=0$

 forn $\geq 0$, i.e., $Y(a, z)=\sum_{n \in \mathbb{Z}_{+}} a_{-n-1} z^{n}$ formal power series in $z$.Let $V$ be a holomorphic vertex algebra. Since the algebra of formal power series in $z$ and $w$ has no zero divisors, it follows that locality for $V$ turns into a usual commutativity:

$$
\begin{equation*}
Y(a, z) Y(b, w)=Y(b, w) Y(a, z) \tag{1}
\end{equation*}
$$

Define a bilinear product $a b$ on the space $V$ by the formula

$$
a b=a_{1} b
$$

and let $|0\rangle=1$

Vertex algebra axioms imply that $V$ is commutative associative unital algebra.

## Two rather abstract examples.

Example 1)A vertex algebra $V$ is called holomorphic if $a_{n}=0$ forn $\geq 0$, i.e., $Y(a, z)=\sum_{n \in \mathbb{Z}_{+}} a_{-n-1} z^{n}$ formal power series in $z$.

Let $V$ be a holomorphic vertex algebra. Since the algebra of formal power series in $z$ and $w$ has no zero divisors, it follows that locality for $V$ turns into a usual commutativity:

$$
\begin{equation*}
Y(a, z) Y(b, w)=Y(b, w) Y(a, z) \tag{1}
\end{equation*}
$$

## Define a bilinear product $a b$ on the space $V$ by the formula


and let $|0\rangle=1$

Vertex algebra axioms imply that $V$ is commutative associative unital algebra.

## Two rather abstract examples.

Example 1)A vertex algebra $V$ is called holomorphic if $a_{n}=0$ forn $\geq 0$, i.e., $Y(a, z)=\sum_{n \in \mathbb{Z}_{+}} a_{-n-1} z^{n}$ formal power series in $z$.

Let $V$ be a holomorphic vertex algebra. Since the algebra of formal power series in $z$ and $w$ has no zero divisors, it follows that locality for $V$ turns into a usual commutativity:

$$
\begin{equation*}
Y(a, z) Y(b, w)=Y(b, w) Y(a, z) . \tag{1}
\end{equation*}
$$

Define a bilinear product $a b$ on the space $V$ by the formula

$$
a b=a+b
$$

and let $|0\rangle=1$

## Two rather abstract examples.

Example 1)A vertex algebra $V$ is called holomorphic if $a_{n}=0$ forn $\geq 0$, i.e., $Y(a, z)=\sum_{n \in \mathbb{Z}_{+}} a_{-n-1} z^{n}$ formal power series in $z$.

Let $V$ be a holomorphic vertex algebra. Since the algebra of formal power series in $z$ and $w$ has no zero divisors, it follows that locality for $V$ turns into a usual commutativity:

$$
\begin{equation*}
Y(a, z) Y(b, w)=Y(b, w) Y(a, z) \tag{1}
\end{equation*}
$$

Define a bilinear product $a b$ on the space $V$ by the formula

$$
a b=a_{-1} b
$$

and let $|0\rangle=1$

Vertex algebra axioms imply that $V$ is commutative associative unital algebra.

## Two rather abstract examples.

Example 1)A vertex algebra $V$ is called holomorphic if $a_{n}=0$ forn $\geq 0$, i.e., $Y(a, z)=\sum_{n \in \mathbb{Z}_{+}} a_{-n-1} z^{n}$ formal power series in $z$.

Let $V$ be a holomorphic vertex algebra. Since the algebra of formal power series in $z$ and $w$ has no zero divisors, it follows that locality for $V$ turns into a usual commutativity:

$$
\begin{equation*}
Y(a, z) Y(b, w)=Y(b, w) Y(a, z) \tag{1}
\end{equation*}
$$

Define a bilinear product $a b$ on the space $V$ by the formula

$$
a b=a_{-1} b
$$

and let $|0\rangle=1$

Vertex algebra axioms imply that $V$ is commutative associative unital algebra.

Furthermore, apply $Y(b, w)$ to both sides of $Y(a, z)|0\rangle=e^{z T}(a)$ :

$$
Y(b, w) Y(a, z)|0\rangle=Y(b, w) e^{z T}(a) .
$$

Applying commutativity (locality) to the left-hand side and then $Y(b, w)|0\rangle=e^{w T}(b)$, we obtain

$$
Y(a, z) e^{w T}(b)=Y(b, w) e^{z T}(a)
$$

Letting $w=0$ and using the commutativity of our product on $V$ we get

$$
Y(a, z)(b)=e^{z T}(a) b .
$$

Thus, the fields $Y(a, z)$ are defined entirely in terms of the product on $V$ and the operator $T$.

Furthermore, apply $Y(b, w)$ to both sides of $Y(a, z)|0\rangle=e^{z T}(a)$ :

$$
Y(b, w) Y(a, z)|0\rangle=Y(b, w) e^{z T}(a) .
$$

Applying commutativity (locality) to the left-hand side and then $Y(b, w)|0\rangle=e^{w T}(b)$, we obtain

$$
Y(a, z) e^{w T}(b)=Y(b, w) e^{z T}(a)
$$

Letting $w=0$ and using the commutativity of our product on $V$ we get

$$
Y(a, z)(b)=e^{z T}(a) b .
$$

Thus, the fields $Y(a, z)$ are defined entirely in terms of the product on $V$ and the operator $T$.

Finally, translation covariance axiom becomes:

$$
T\left(e^{z T}(a) b\right)-e^{z T}(a) T(b)=T\left(e^{z T}(a)\right) b .
$$

## Letting $z=0$ we see that $T$ is a derivation of the associative

 commutative unital superalgebra $V$.Conversely, consider $V$ an associative commutative unital algebra $V$ with a derivation $T$. Let us construct in $V$ a vertex algebra structure: For $a, b \in V$,
define

$$
Y(a, z) b=\left(e^{z T}(a)\right) b .
$$

This satisfies all axioms of vertex algebras.

Finally, translation covariance axiom becomes:

$$
T\left(e^{z T}(a) b\right)-e^{z T}(a) T(b)=T\left(e^{z T}(a)\right) b .
$$

Letting $z=0$ we see that $T$ is a derivation of the associative commutative unital superalgebra $V$.

Conversely, consider $V$ an associative commutative unital algebra $V$
with a derivation $T$. Let us construct in $V$ a vertex algebra structure: For $a, b \in V$,
define

$$
Y(a, z) b=\left(e^{z T}(a)\right) b .
$$

This satisfies all axioms of vertex algebras.

Finally, translation covariance axiom becomes:

$$
T\left(e^{z T}(a) b\right)-e^{z T}(a) T(b)=T\left(e^{z T}(a)\right) b
$$

Letting $z=0$ we see that $T$ is a derivation of the associative commutative unital superalgebra $V$.

Conversely, consider $V$ an associative commutative unital algebra $V$ with a derivation $T$. Let us construct in $V$ a vertex algebra structure: For $a, b \in V$,
define

$$
Y(a, z) b=\left(e^{z T}(a)\right) b
$$

This satisfies all axioms of vertex algebras.

Finally, translation covariance axiom becomes:

$$
T\left(e^{z T}(a) b\right)-e^{z T}(a) T(b)=T\left(e^{z T}(a)\right) b
$$

Letting $z=0$ we see that $T$ is a derivation of the associative commutative unital superalgebra $V$.

Conversely, consider $V$ an associative commutative unital algebra $V$ with a derivation $T$. Let us construct in $V$ a vertex algebra structure: For $a, b \in V$,
define

$$
Y(a, z) b=\left(e^{z T}(a)\right) b
$$

This satisfies all axioms of vertex algebras.

Finally, translation covariance axiom becomes:

$$
T\left(e^{z T}(a) b\right)-e^{z T}(a) T(b)=T\left(e^{z T}(a)\right) b
$$

Letting $z=0$ we see that $T$ is a derivation of the associative commutative unital superalgebra $V$.

Conversely, consider $V$ an associative commutative unital algebra $V$ with a derivation $T$. Let us construct in $V$ a vertex algebra structure: For $a, b \in V$,
define

$$
Y(a, z) b=\left(e^{z T}(a)\right) b
$$

This satisfies all axioms of vertex algebras.

If $T=0$, then $Y(a, z)(b)=a b$. Therefore we may view vertex algebras as a generalization of unital commutative associative algebras where the multiplication depends on the parameter $z$ via

$$
a_{z} b=Y(a, z)(b)
$$

However, as we shall see, a general vertex algebra is very far from being a "commutative" object.

If $T=0$, then $Y(a, z)(b)=a b$. Therefore we may view vertex algebras as a generalization of unital commutative associative algebras where the multiplication depends on the parameter $z$ via

$$
a_{z} b=Y(a, z)(b)
$$

However, as we shall see, a general vertex algebra is very far from being a "commutative" object.

## Example 2)

Any local linear field algebra $F \subset$ glf $(U)$ is a vertex algebra with the vacuum vector $|0\rangle=I d_{U}$, the infintesimal translation operator $T=\partial_{z}$ and the vertex operators

$$
Y(a(z), x) b(z)=\sum_{n \in \mathbb{Z}}\left(a(z)_{n} b(z)\right) x^{-n-1}
$$

First, the vertex operators $Y(a(z), x)$ are End $F$-valued fields since $F$ consists of (EndU-valued) mutually local fields.
Recall that

$$
a(z)_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right) .
$$

## Example 2)

Any local linear field algebra $F \subset g / f(U)$ is a vertex algebra with vacuum vector $|0\rangle=\mid d_{u}$, the infintesimal translation operator $T=\partial_{z}$ and the vertex operators

$$
Y(a(z), x) b(z)=\sum_{n \in \mathbb{Z}}\left(a(z)_{n} b(z)\right) x^{-n-1}
$$

First, the vertex operators $Y(a(z), x)$ are End $F$-valued fields since $F$ consists of ( End $U$-valued) mutually local fields.
Recall that

$$
a(z)_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right) .
$$

## Example 2)

Any local linear field algebra $F \subset g / f(U)$ is a vertex algebra with the vacuum vector $|0\rangle=I d_{U}$, the infintesimal translation operator $T=\partial_{z}$ and the vertex operators

$$
Y(a(z), x) b(z)=\sum_{n \in \mathbb{Z}}\left(a(z)_{n} b(z)\right) x^{-n-1}
$$

First, the vertex operators $Y(a(z), x)$ are End $F$-valued fields since $F$ consists of (EndU-valued) mutually local fields.
Recall that

$$
a(z)_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right)
$$

## Example 2)

Any local linear field algebra $F \subset g / f(U)$ is a vertex algebra with the vacuum vector $|0\rangle=I d_{U}$, the infintesimal translation operator and the vertex operators

$$
Y(a(z), x) b(z)=\sum_{n \in \mathbb{Z}}\left(a(z)_{n} b(z)\right) x^{-n-1}
$$

First, the vertex operators $Y(a(z), x)$ are End $F$-valued fields since $F$ consists of (End $U$-valued) mutually local fields.
Recall that
$a(z){ }_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right)$

## Example 2)

Any local linear field algebra $F \subset \operatorname{glf}(U)$ is a vertex algebra with the vacuum vector $|0\rangle=I d_{U}$, the infintesimal translation operator $T=\partial_{z}$


First, the vertex operators $Y(a(z), x)$ are End $F$-valued fields since $F$ consists of (End $U$-valued) mutually local fields.
Recall that

$$
a(z)_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right)
$$

## Example 2)

Any local linear field algebra $F \subset \operatorname{glf}(U)$ is a vertex algebra with the vacuum vector $|0\rangle=I d_{\nu}$, the infintesimal translation operator $T=\partial_{z}$ and the vertex operators

$$
Y(a(z), x) b(z)=\sum_{n \in \mathbb{Z}}\left(a(z)_{n} b(z)\right) x^{-n-1}
$$

First, the vertex operators $Y(a(z), x)$ are End $F$-valued fields since $F$ consists of (EndU-valued) mutually local fields.
$a(z)_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right)$

## Example 2)

Any local linear field algebra $F \subset \operatorname{glf}(U)$ is a vertex algebra with the vacuum vector $|0\rangle=I d_{\nu}$, the infintesimal translation operator $T=\partial_{z}$ and the vertex operators

$$
Y(a(z), x) b(z)=\sum_{n \in \mathbb{Z}}\left(a(z)_{n} b(z)\right) x^{-n-1}
$$

First, the vertex operators $Y(a(z), x)$ are End $F$-valued fields since $F$ consists of (End $U$-valued) mutually local fields.
Recall that

$$
a(z)_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right) .
$$

## Example 2)

Any local linear field algebra $F \subset \operatorname{glf}(U)$ is a vertex algebra with the vacuum vector $|0\rangle=I d_{\nu}$, the infintesimal translation operator $T=\partial_{z}$ and the vertex operators

$$
Y(a(z), x) b(z)=\sum_{n \in \mathbb{Z}}\left(a(z)_{n} b(z)\right) x^{-n-1}
$$

First, the vertex operators $Y(a(z), x)$ are End $F$-valued fields since $F$ consists of (End $U$-valued) mutually local fields.
Recall that

$$
a(z)_{n} b(z)=\operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w}(z-w)^{n}-b(w) a(z) \iota_{w, z}(z-w)^{n}\right) .
$$

Thus

$$
\begin{aligned}
Y(a(z), x) b(z)= & \sum_{n \in \mathbb{Z}}\left(a(z)_{n} b(z)\right) x^{-n-1} \\
= & \operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w} \delta(z-w, x)\right. \\
& \left.\quad-b(w) a(z) \iota_{w, z} \delta(z-w, x)\right) .
\end{aligned}
$$

From this expresion and the properties of de $\delta$ function, locality axiom follows.

The vacuum axioms mean the following:

$$
\partial_{z} I d_{V}=0,\left(l d_{V}\right)_{n} a(z)=\delta_{n,-1} a(z) \text { for } n \in \mathbb{Z}
$$

$a(z)_{n} / d_{V}=\delta_{n,-1} a(z)$ for $n \geq-1$,

Thus

$$
\begin{aligned}
Y(a(z), x) b(z)= & \sum_{n \in \mathbb{Z}}\left(a(z)_{n} b(z)\right) x^{-n-1} \\
= & \operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w} \delta(z-w, x)\right. \\
& \left.\quad-b(w) a(z) \iota_{w, z} \delta(z-w, x)\right) .
\end{aligned}
$$

From this expresion and the properties of de $\delta$ function, locality axiom follows.

The vacuum axioms mean the following:

$$
\partial_{z} I d_{V}=0,\left(l d_{V}\right)_{n} a(z)=\delta_{n,-1} a(z) \text { for } n \in \mathbb{Z}
$$

$a(z)_{n} / d v=\delta_{n,-1} a(z)$ for $n \geq-1$

Thus

$$
\begin{aligned}
Y(a(z), x) b(z)= & \sum_{n \in \mathbb{Z}}\left(a(z)_{n} b(z)\right) x^{-n-1} \\
= & \operatorname{Res}_{z}\left(a(z) b(w) \iota_{z, w} \delta(z-w, x)\right. \\
& \left.\quad-b(w) a(z) \iota_{w, z} \delta(z-w, x)\right) .
\end{aligned}
$$

From this expresion and the properties of de $\delta$ function, locality axiom follows.

The vacuum axioms mean the following:

$$
\begin{gathered}
\partial_{z} I d_{V}=0,\left(l d_{V}\right)_{n} a(z)=\delta_{n,-1} a(z) \text { for } n \in \mathbb{Z} \\
a(z)_{n} I d_{V}=\delta_{n,-1} a(z) \text { for } n \geq-1
\end{gathered}
$$

Translation covariance means:

$$
\left[\partial_{z}, a(z)_{n}\right] b(z)=-n a(z)_{n-1} b(z) \quad \text { forn } \in \mathbb{Z} .
$$

## Outline

(1) Vertex algebras

- Formal Calculus
- Locality
- Vertex Algebras
- Structure of VA
(2) Vertex algebras
- Other equivalent definitions of vertex algebras


## Skewsymmetry.

For any elements $a$ and $b$ of a vertex algebra $V$ one has the following skewsymmetry relation:

$$
Y(a, z) b=e^{z T} Y(b,-z) a
$$

## Subalgebras, ideals, and tensor products

A subalgebra of a vertex algebra $V$ is a subspace $U$ of $V$ containing |0) such that

$$
a_{n} U \subseteq U \quad \text { for all } a \in U
$$

It is clear that $U$ is a vertex algebra too, its fields being

$$
Y(a, z)=\sum_{n} a_{n} \mid u z^{-n-1}
$$

## Skewsymmetry.

For any elements $a$ and $b$ of a vertex algebra $V$ one has the following skewsymmetry relation:

$$
Y(a, z) b=e^{z T} Y(b,-z) a
$$

## Subalgebras, ideals, and tensor products

A subalgebra of a vertex algebra $V$ is a subspace $U$ of $V$ containing 0) such that


It is clear that $U$ is a vertex algebra too, its fields being


## Skewsymmetry.

For any elements $a$ and $b$ of a vertex algebra $V$ one has the following skewsymmetry relation:

$$
Y(a, z) b=e^{z T} Y(b,-z) a .
$$

## Subalgebras, ideals, and tensor products

## A subalgebra of a vertex algebra $V$ is a subspace $U$ of $V$ containing 0 ) such that

It is clear that $U$ is a vertex algebra too, its fields being


## Skewsymmetry.

For any elements $a$ and $b$ of a vertex algebra $V$ one has the following skewsymmetry relation:

$$
Y(a, z) b=e^{z T} Y(b,-z) a .
$$

## Subalgebras, ideals, and tensor products

A subalgebra of a vertex algebra $V$ is a subspace $U$ of $V$ containing
$|0\rangle$ such that

It is clear that $U$ is a vertex algebra too, its fields being


## Skewsymmetry.

For any elements $a$ and $b$ of a vertex algebra $V$ one has the following skewsymmetry relation:

$$
Y(a, z) b=e^{z T} Y(b,-z) a .
$$

## Subalgebras, ideals, and tensor products

A subalgebra of a vertex algebra $V$ is a subspace $U$ of $V$ containing
$|0\rangle$ such that

$$
a_{n} U \subseteq U \quad \text { for all } a \in U .
$$

It is clear that $U$ is a vertex algebra too, its fields being

$$
Y(a, z)=\sum_{n} a_{n} \mid u z^{-n-1} .
$$

A homomorphism of a vertex algebra $V$ to a vertex algebra $V^{\prime}$ is a linear map $\psi: V \rightarrow V^{\prime}$ such that

$$
\psi\left(a_{n} b\right)=\psi(a)_{n} \psi(b) \quad \text { for all } a, b \in V, n \in \mathbb{Z}
$$



Note that we have

$$
a_{n} V \subset J \text { for all } a \in J .
$$

Hence the quotient space $V / J$ has a canonical structure of a vertex algebra, and we have a canonical homomorphism $V \rightarrow V / J$ of vertex algebras.

A homomorphism of a vertex algebra $V$ to a vertex algebra $V^{\prime}$ is a linear map $\psi: V \rightarrow V^{\prime}$ such that

$$
\psi\left(a_{n} b\right)=\psi(a)_{n} \psi(b) \quad \text { for all } a, b \in V, n \in \mathbb{Z} .
$$

## An ideal of a vertex algebra $V$ is a $T$-invariant subspace $J$ not containing $|0\rangle$ such that

Note that we have
$a_{n} V \subset J$ for all $a \in J$.

Hence the quotient space $V / J$ has a canonical structure of a vertex algebra, and we have a canonical homomorphism $V \rightarrow V / J$ of vertex algebras.

A homomorphism of a vertex algebra $V$ to a vertex algebra $V^{\prime}$ is a linear map $\psi: V \rightarrow V^{\prime}$ such that

$$
\psi\left(a_{n} b\right)=\psi(a)_{n} \psi(b) \quad \text { for all } a, b \in V, n \in \mathbb{Z} .
$$

An ideal of a vertex algebra $V$ is a $T$-invariant subspace $J$ not containing $|0\rangle$ such that

$$
a_{n} J \subset J \text { for all } a \in V .
$$

Note that we have
$a_{n} V \subset J$ for all $a \in J$.

Hence the quotient space $V / J$ has a canonical structure of a vertex algebra, and we have a canonical homomorphism $V \rightarrow V / J$ of vertex algebras.

A homomorphism of a vertex algebra $V$ to a vertex algebra $V^{\prime}$ is a linear map $\psi: V \rightarrow V^{\prime}$ such that

$$
\psi\left(a_{n} b\right)=\psi(a)_{n} \psi(b) \quad \text { for all } a, b \in V, n \in \mathbb{Z}
$$

An ideal of a vertex algebra $V$ is a $T$-invariant subspace $J$ not containing $|0\rangle$ such that

$$
a_{n} J \subset J \text { for all } a \in V .
$$

Note that we have

$$
a_{n} V \subset J \text { for all } a \in J .
$$

A homomorphism of a vertex algebra $V$ to a vertex algebra $V^{\prime}$ is a linear map $\psi: V \rightarrow V^{\prime}$ such that

$$
\psi\left(a_{n} b\right)=\psi(a)_{n} \psi(b) \quad \text { for all } a, b \in V, n \in \mathbb{Z}
$$

An ideal of a vertex algebra $V$ is a $T$-invariant subspace $J$ not containing $|0\rangle$ such that

$$
a_{n} J \subset J \text { for all } a \in V .
$$

Note that we have

$$
a_{n} V \subset J \text { for all } a \in J .
$$

Hence the quotient space $V / J$ has a canonical structure of a vertex algebra,

A homomorphism of a vertex algebra $V$ to a vertex algebra $V^{\prime}$ is a linear map $\psi: V \rightarrow V^{\prime}$ such that

$$
\psi\left(a_{n} b\right)=\psi(a)_{n} \psi(b) \quad \text { for all } a, b \in V, n \in \mathbb{Z}
$$

An ideal of a vertex algebra $V$ is a $T$-invariant subspace $J$ not containing $|0\rangle$ such that

$$
a_{n} J \subset J \text { for all } a \in V .
$$

Note that we have

$$
a_{n} V \subset J \text { for all } a \in J .
$$

Hence the quotient space $V / J$ has a canonical structure of a vertex algebra, and we have a canonical homomorphism $V \rightarrow V / J$ of vertex algebras.

The tensor product of two vertex algebras $U$ and $V$ is defined as follows.

The space of states is $U \otimes V$,
the vacuum vector is $|0\rangle \otimes|0\rangle$,
the infinitesimal translation operator is $T \otimes 1+1 \otimes T$,
and fields are


In other words


It is straightforward to check that $U \otimes V$ is a vertex algebra.

The tensor product of two vertex algebras $U$ and $V$ is defined as follows.

The space of states is $U \otimes V$,
the vacuum vector is $|0\rangle \otimes|0\rangle$,
the infinitesimal translation operator is $T \otimes 1+1 \otimes T$,
and fields are


In other words


It is straightforward to check that $U \otimes V$ is a vertex algebra.

The tensor product of two vertex algebras $U$ and $V$ is defined as follows.

The space of states is $U \otimes V$, the vacuum vector is $|0\rangle \otimes|0\rangle$,
the infinitesimal translation operator is $T \otimes 1+1 \otimes T$,
and fields are

$$
Y(u \otimes v, z)=Y(u, z) \otimes Y(v, z)=\sum_{n, m} u_{m} \otimes v_{n} z^{-m-n-2}
$$

In other words


The tensor product of two vertex algebras $U$ and $V$ is defined as follows.

The space of states is $U \otimes V$,
the vacuum vector is $|0\rangle \otimes|0\rangle$,
the infinitesimal translation operator is $T \otimes 1+1 \otimes T$,
and fields are


In other words


The tensor product of two vertex algebras $U$ and $V$ is defined as follows.

The space of states is $U \otimes V$,
the vacuum vector is $|0\rangle \otimes|0\rangle$,
the infinitesimal translation operator is $T \otimes 1+1 \otimes T$,
and fields are

$$
Y(u \otimes v, z)=Y(u, z) \otimes Y(v, z)=\sum_{n, m} u_{m} \otimes v_{n} z^{-m-n-2}
$$

In other words


The tensor product of two vertex algebras $U$ and $V$ is defined as follows.

The space of states is $U \otimes V$,
the vacuum vector is $|0\rangle \otimes|0\rangle$,
the infinitesimal translation operator is $T \otimes 1+1 \otimes T$,
and fields are

$$
Y(u \otimes v, z)=Y(u, z) \otimes Y(v, z)=\sum_{n, m} u_{m} \otimes v_{n} z^{-m-n-2}
$$

In other words

$$
(u \otimes v)_{k}=\sum_{m} u_{m} \otimes v_{-m+k-1}
$$

It is straightforward to check that $U \otimes V$ is a vertex algebra.

## Uniqueness theorem

## The following uniqueness theorem is extremely useful in identifying a

 field with one of the fields of a vertex algebra.
## Theorem: Let $V$ he a vertex algebra and let $B(z)$ he a field (with

 values in End $V$ ) which is mutually local with all the fields $Y(a, z) \in V$. Suppose that for some $b \in V$ :$$
B(z)|0\rangle=e^{z T} b .
$$

Then $B(z)=Y(b, z)$.

## Uniqueness theorem

The following uniqueness theorem is extremely useful in identifying a field with one of the fields of a vertex algebra.

Theorem: Let $V$ he a vertex algebra and let $B(z)$ he a field (with values in End $V$ ) which is mutually local with all the fields $Y(a, z) \in V$ Suppose that for some $b \in V$ :

$$
B(z)|0\rangle=e^{z T} b
$$

Then $B(z)=Y(b, z)$.

## Uniqueness theorem

The following uniqueness theorem is extremely useful in identifying a field with one of the fields of a vertex algebra.

Theorem: Let $V$ he a vertex algebra and let $B(z)$ he a field (with values in End $V$ ) which is mutually local with all the fields $Y(a, z) \in V$. Suppose that for some $b \in V$ :

$$
B(z)|0\rangle=e^{z T} b
$$

Then $B(z)=Y(b, z)$.

## Uniqueness theorem

The following uniqueness theorem is extremely useful in identifying a field with one of the fields of a vertex algebra.

Theorem: Let $V$ he a vertex algebra and let $B(z)$ he a field (with values in End $V$ ) which is mutually local with all the fields $Y(a, z) \in V$. Suppose that for some $b \in V$ :

$$
B(z)|0\rangle=e^{z T} b
$$

Then $B(z)=Y(b, z)$.

## Uniqueness theorem

The following uniqueness theorem is extremely useful in identifying a field with one of the fields of a vertex algebra.

Theorem: Let $V$ he a vertex algebra and let $B(z)$ he a field (with values in End $V$ ) which is mutually local with all the fields $Y(a, z) \in V$. Suppose that for some $b \in V$ :

$$
B(z)|0\rangle=e^{z T} b
$$

Then $B(z)=Y(b, z)$.

The first corollary of the Uniqueness theorem is the following important proposition.

Proposition ( $n$-product axiom) For any two elements $a$ and $b$ of $a$ vertex algebra $V$ and any $n \in \mathbb{Z}$ one has:

$$
Y\left(a_{n} b, z\right)=Y(a, z)_{n} Y(b, z)
$$

The first corollary of the Uniqueness theorem is the following important proposition.

Proposition ( $n$-product axiom) For any two elements $a$ and $b$ of $a$ vertex algebra $V$ and any $n \in \mathbb{Z}$ one has:

$$
Y\left(a_{n} b, z\right)=Y(a, z)_{n} Y(b, z)
$$

The first corollary of the Uniqueness theorem is the following important proposition.

Proposition ( $n$-product axiom) For any two elements $a$ and $b$ of a vertex algebra $V$ and any $n \in \mathbb{Z}$ one has:

$$
Y\left(a_{n} b, z\right)=Y(a, z)_{n} Y(b, z)
$$

Corollary (a) In a vertex algebra $V$ for any collection of vectors $a^{1}, \ldots, a^{n} \in V$ and any collection of positive integers $j_{1} i, \ldots, j_{k}$ one has

$$
: \partial^{\left(j_{1}-1\right)} Y\left(a^{1}, z\right) \ldots . \partial^{\left(j_{n}-1\right)} Y\left(a^{n}, z\right):=Y\left(a_{-j_{1}}^{1} \ldots a_{-j_{n}}^{n}|0\rangle, z\right) .
$$

## (b) For any $a, b \in V$ and any $n \in \mathbb{Z}$ one has:

$$
\partial^{(n)} Y(a, z) Y(b, z):=Y\left(a_{-n-1} b, z\right)
$$

## (c) For any $a \in V$ one has $Y(T a, z)=\partial Y(a, z)$.

Corollary (a) In a vertex algebra $V$ for any collection of vectors $a^{1}, \ldots, a^{n} \in V$ and any collection of positive integers $j_{1} i, \ldots, j_{k}$ one has

$$
: \partial^{\left(j_{1}-1\right)} Y\left(a^{1}, z\right) \ldots . \partial^{\left(j_{n}-1\right)} Y\left(a^{n}, z\right):=Y\left(a_{-j_{1}}^{1} \ldots a_{-j_{n}}^{n}|0\rangle, z\right) .
$$

(b) For any $a, b \in V$ and any $n \in \mathbb{Z}$ one has:

$$
: \partial^{(n)} Y(a, z) Y(b, z):=Y\left(a_{-n-1} b, z\right)
$$

(c) For any $a \in V$ one has $Y(T a, z)=\partial Y(a, z)$.

Corollary (a) In a vertex algebra $V$ for any collection of vectors $a^{1}, \ldots, a^{n} \in V$ and any collection of positive integers $j_{1} i, \ldots, j_{k}$ one has

$$
: \partial^{\left(j_{1}-1\right)} Y\left(a^{1}, z\right) \ldots . \partial^{\left(j_{n}-1\right)} Y\left(a^{n}, z\right):=Y\left(a_{-j_{1}}^{1} \ldots a_{-j_{n}}^{n}|0\rangle, z\right) .
$$

(b) For any $a, b \in V$ and any $n \in \mathbb{Z}$ one has:

$$
: \partial^{(n)} Y(a, z) Y(b, z):=Y\left(a_{-n-1} b, z\right)
$$

(c) For any $a \in V$ one has $Y(T a, z)=\partial Y(a, z)$.

The following theorem allows one to construct vertex algebras.
Existence Theorem. Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}$ ( $A$ an index set) be a collection of fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
(ii) $T|0\rangle=0,\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} \quad(\alpha \in A)$,
(iii) the linear map: $\sum_{\alpha} \mathbb{C} a^{\alpha}(z) \rightarrow \sum_{\alpha} \mathbb{C} a^{\alpha}$, defined by $a^{\alpha}(z) \mapsto a^{\alpha}$, is inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.

Then the formula

$$
Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2}} \ldots\left(a^{\alpha_{n}}(z)_{j_{n}} I d_{V}\right)\right)
$$

defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector, $T$ is the infinitesimal translation operatorand

$$
Y\left(a^{\alpha}, z\right)=a^{\alpha}(z), \quad \alpha \in A .
$$

The following theorem allows one to construct vertex algebras.
Existence Theorem. Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
(ii) $T|0\rangle=0,\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} \quad(\alpha \in A)$,
(iii) the linear map: $\sum_{\alpha} \mathbb{C} a^{\alpha}(z) \rightarrow \sum_{\alpha} \mathbb{C a}^{\alpha}$, defined by $a^{\alpha}(z) \mapsto a^{\alpha}$, is inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.

Then the formula

$$
Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2}} \ldots\left(a^{\alpha_{n}}(z)_{j_{n}} I d_{V}\right)\right)
$$

defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector, $T$ is the infinitesimal translation operatorand

$$
Y\left(a^{\alpha}, z\right)=a^{\alpha}(z), \quad \alpha \in A .
$$

The following theorem allows one to construct vertex algebras.
Existence Theorem. Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}$ ( $A$ an index set) be a collection of fields such that
 inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,


Then the formula

$$
Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2}} \ldots\left(a^{\alpha_{n}}(z)_{j_{n}} I d_{V}\right)\right)
$$

defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector, $T$ is the infinitesimal translation operatorand

$$
Y\left(a^{\alpha}, z\right)=a^{\alpha}(z), \quad \alpha \in A
$$

The following theorem allows one to construct vertex algebras.
Existence Theorem. Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}$ ( $A$ an index set) be a collection of fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
 inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,


Then the formula

$$
Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2} \ldots} .\left(a^{\alpha_{n}}(z)_{j_{n}} I d_{V}\right)\right)
$$

defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector, $T$ is the infinitesimal translation operatorand

$$
Y\left(a^{\alpha}, z\right)=a^{\alpha}(z), \quad \alpha \in A
$$

The following theorem allows one to construct vertex algebras.
Existence Theorem. Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}$ ( $A$ an index set) be a collection of fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
(ii) $T|0\rangle=0,\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} \quad(\alpha \in A)$,
inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$
Then the formula

$$
Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2}} \ldots\left(a^{\alpha_{n}}(z)_{j_{n}} \mid d_{V}\right)\right)
$$

defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector, $T$ is the infinitesimal translation operatorand

The following theorem allows one to construct vertex algebras.
Existence Theorem . Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}$ ( $A$ an index set) be a collection of fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
(ii) $T|0\rangle=0,\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} \quad(\alpha \in A)$,
(iii) the linear map: $\sum_{\alpha} \mathbb{C} a^{\alpha}(z) \rightarrow \sum_{\alpha} \mathbb{C} a^{\alpha}$, defined by $a^{\alpha}(z) \mapsto a^{\alpha}$, is inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.
Then the formula

$$
Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2} \ldots( }\left(a^{\alpha_{n}}(z)_{j_{n}} \mid d_{V}\right)\right)
$$

defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector, $T$ is the infinitesimal translation operatorand

The following theorem allows one to construct vertex algebras.
Existence Theorem . Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}$ ( $A$ an index set) be a collection of fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
(ii) $T|0\rangle=0,\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} \quad(\alpha \in A)$,
(iii) the linear map: $\sum_{\alpha} \mathbb{C} a^{\alpha}(z) \rightarrow \sum_{\alpha} \mathbb{C} a^{\alpha}$, defined by $a^{\alpha}(z) \mapsto a^{\alpha}$, is inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,

Then the formula
$Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2}} \ldots\left(a^{\alpha_{n}}(z)_{j_{n}} / d_{V}\right)\right)$
defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector, $T$ is the infinitesimal translation operatorand

The following theorem allows one to construct vertex algebras.
Existence Theorem . Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}$ ( $A$ an index set) be a collection of fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
(ii) $T|0\rangle=0,\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} \quad(\alpha \in A)$,
(iii) the linear map: $\sum_{\alpha} \mathbb{C} a^{\alpha}(z) \rightarrow \sum_{\alpha} \mathbb{C} a^{\alpha}$, defined by $a^{\alpha}(z) \mapsto a^{\alpha}$, is inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.

defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector, $T$ is the infinitesimal translation operatorand

The following theorem allows one to construct vertex algebras.
Existence Theorem . Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}$ ( $A$ an index set) be a collection of fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
(ii) $T|0\rangle=0,\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} \quad(\alpha \in A)$,
(iii) the linear map: $\sum_{\alpha} \mathbb{C} a^{\alpha}(z) \rightarrow \sum_{\alpha} \mathbb{C} a^{\alpha}$, defined by $a^{\alpha}(z) \mapsto a^{\alpha}$, is inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j n}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.

Then the formula

$$
Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2}} \ldots\left(a^{\alpha_{n}}(z)_{j_{n}} \mid d_{V}\right)\right)
$$

defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector, $T$ is the infinitesimal translation operatorand

The following theorem allows one to construct vertex algebras.
Existence Theorem . Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}$ ( $A$ an index set) be a collection of fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
(ii) $T|0\rangle=0,\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} \quad(\alpha \in A)$,
(iii) the linear map: $\sum_{\alpha} \mathbb{C} a^{\alpha}(z) \rightarrow \sum_{\alpha} \mathbb{C} a^{\alpha}$, defined by $a^{\alpha}(z) \mapsto a^{\alpha}$, is inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.

Then the formula

$$
Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2}} \ldots\left(a^{\alpha_{n}}(z)_{j_{n}} \mid d_{V}\right)\right)
$$

defines a unique structure of a vertex algehra on $V$

The following theorem allows one to construct vertex algebras.
Existence Theorem . Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}(A$ an index set) be a collection of fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
(ii) $T|0\rangle=0,\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} \quad(\alpha \in A)$,
(iii) the linear map: $\sum_{\alpha} \mathbb{C} a^{\alpha}(z) \rightarrow \sum_{\alpha} \mathbb{C} a^{\alpha}$, defined by $a^{\alpha}(z) \mapsto a^{\alpha}$, is inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.

Then the formula

$$
Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2}} \ldots\left(a^{\alpha_{n}}(z)_{j_{n}} \mid d_{V}\right)\right)
$$

defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector

The following theorem allows one to construct vertex algebras.
Existence Theorem . Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}$ ( $A$ an index set) be a collection of fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
(ii) $T|0\rangle=0,\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} \quad(\alpha \in A)$,
(iii) the linear map: $\sum_{\alpha} \mathbb{C} a^{\alpha}(z) \rightarrow \sum_{\alpha} \mathbb{C} a^{\alpha}$, defined by $a^{\alpha}(z) \mapsto a^{\alpha}$, is inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.

Then the formula

$$
Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2}} \ldots\left(a^{\alpha_{n}}(z)_{j_{n}} \mid d_{V}\right)\right)
$$

defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector, $T$ is the infinitesimal translation operator

The following theorem allows one to construct vertex algebras.
Existence Theorem . Let $V$ he a vector superspace, let $|0\rangle \in V$ and $T$ endomorphism of $V$. Let $\left\{a^{\alpha}(z)\right\}_{\alpha \in A}$ ( $A$ an index set) be a collection of fields such that
(i) $\left[T, a^{\alpha}(z)\right]=\partial a^{\alpha}(z) \quad(\alpha \in A)$,
(ii) $T|0\rangle=0,\left.a^{\alpha}(z)|0\rangle\right|_{z=0}=a^{\alpha} \quad(\alpha \in A)$,
(iii) the linear map: $\sum_{\alpha} \mathbb{C} a^{\alpha}(z) \rightarrow \sum_{\alpha} \mathbb{C} a^{\alpha}$, defined by $a^{\alpha}(z) \mapsto a^{\alpha}$, is inyective,
(iv) $a^{\alpha}(z)$ and $a^{\beta}(z)$ are mutually local $(\alpha, \beta \in A)$,
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.

Then the formula

$$
Y\left(a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle, z\right)=a^{\alpha_{1}}(z)_{j_{1}}\left(a^{\alpha_{2}}(z)_{j_{2}} \ldots\left(a^{\alpha_{n}}(z)_{j_{n}} \mid d_{V}\right)\right)
$$

defines a unique structure of a vertex algehra on $V$ such that $|0\rangle$ is the vacuum vector, $T$ is the infinitesimal translation operatorand

$$
Y\left(a^{\alpha}, z\right)=a^{\alpha}(z), \quad \alpha \in A .
$$

## A collection of fields of a vertex algebra $V$ satisfying

(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.
is called a generating set of flelds of $V$.

Universal vertex algebras associated to $\mathfrak{g}$

A Lie algebra $\mathfrak{g}$ is called a formal distribution Lie algebra if it is spanned over $\mathbb{C}$ by coefficients of a family $F$ of $\mathfrak{g}$-valued mutually local formal distributions.

Let $\mathfrak{g}$ be a Lie algebra spanned by mutually local formal distributions $a^{\alpha}(z),(\alpha \in A)$, and suppose that there exists an endomorphism $T$ of the space $g$ such that

$$
\operatorname{Ta}^{\alpha}(z)=\partial a^{\alpha}(z) .
$$

A collection of fields of a vertex algebra $V$ satisfying
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.
is called a generating set of fields of V .

Universal vertex algebras associated to $\mathfrak{g}$

A Lie algebra $\mathfrak{g}$ is called a formal distribution Lie algebra if it is
spanned over $\mathbb{C}$ by coefficients of a family $F$ of $\mathfrak{g}$-valued mutually local formal distributions.

Let $\mathfrak{g}$ be a Lie algebra spanned by mutually local formal distributions $a^{\alpha}(z),(\alpha \in A)$, and suppose that there exists an endomorphism $T$ of the space $\mathfrak{g}$ such that

$$
\operatorname{Ta}^{\alpha}(z)=\partial a^{\alpha}(z) .
$$

A collection of fields of a vertex algebra $V$ satisfying
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$. is called a generating set of fields of $V$.

Universal vertex algebras associated to $\mathfrak{g}$
A Lie algebra $\mathfrak{g}$ is called a formal distribution Lie algebra if it is spanned over $\mathbb{C}$ by coefficients of a family $F$ of $\mathfrak{g}$-valued mutually local formal distributions.

Let $\mathfrak{g}$ be a Lie algebra spanned by mutually local formal distributions $a^{\alpha}(z),(\alpha \in A)$, and suppose that there exists an endomorphism $T$ of the space $\mathfrak{g}$ such that

$$
\operatorname{Ta}^{\alpha}(z)=\partial a^{\alpha}(z) .
$$

A collection of fields of a vertex algebra $V$ satisfying
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.
is called a generating set of fields of $V$.

## Universal vertex algebras associated to $\mathfrak{g}$

A Lie algebra $\mathfrak{g}$ is called a formal distribution Lie algebra if it is
spanned over $\mathbb{C}$ by coefficients of a family $F$ of $\mathfrak{g}$-valued mutually local formal distributions.

Let $\mathfrak{g}$ be a Lie algebra spanned by mutually local formal distributions $a^{\alpha}(z),(\alpha \in A)$, and suppose that there exists an endomorphism $T$ of the space $\mathfrak{g}$ such that

$$
\operatorname{Ta}^{\alpha}(z)=\partial a^{\alpha}(z) .
$$

A collection of fields of a vertex algebra $V$ satisfying
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.
is called a generating set of fields of $V$.

## Universal vertex algebras associated to $\mathfrak{g}$

A Lie algebra $\mathfrak{g}$ is called a formal distribution Lie algebra if it is spanned over $\mathbb{C}$ by coefficients of a family $F$ of $\mathfrak{g}$-valued mutually local formal distributions.

Let $\mathfrak{g}$ be a Lie algebra spanned by mutually local formal distributions
$a^{\alpha}(z),(\alpha \in A)$, and suppose that there exists an endomorphism $T$ of
the space $g$ such that
$\operatorname{Ta}^{\alpha}(z)=\partial a^{\alpha}(z)$.

A collection of fields of a vertex algebra $V$ satisfying
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.
is called a generating set of fields of $V$.

## Universal vertex algebras associated to $\mathfrak{g}$

A Lie algebra $\mathfrak{g}$ is called a formal distribution Lie algebra if it is spanned over $\mathbb{C}$ by coefficients of a family $F$ of $\mathfrak{g}$-valued mutually local formal distributions.

Let $\mathfrak{g}$ be a Lie algebra spanned by mutually local formal distributions $a^{\alpha}(z),(\alpha \in A)$,
$\operatorname{Ta}^{\alpha}(z)=\partial a^{\alpha}(z)$.

A collection of fields of a vertex algebra $V$ satisfying
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.
is called a generating set of fields of $V$.

## Universal vertex algebras associated to $\mathfrak{g}$

A Lie algebra $\mathfrak{g}$ is called a formal distribution Lie algebra if it is spanned over $\mathbb{C}$ by coefficients of a family $F$ of $\mathfrak{g}$-valued mutually local formal distributions.

Let $\mathfrak{g}$ be a Lie algebra spanned by mutually local formal distributions $a^{\alpha}(z),(\alpha \in A)$, and suppose that there exists an endomorphism $T$ of the space $\mathfrak{g}$ such that


A collection of fields of a vertex algebra $V$ satisfying
(v) the vectors $a_{j_{1}}^{\alpha_{1}} \ldots a_{j_{n}}^{\alpha_{n}}|0\rangle$ with $j_{s} \in \mathbb{Z}, \alpha_{s} \in A$ span $V$.
is called a generating set of fields of $V$.

## Universal vertex algebras associated to $\mathfrak{g}$

A Lie algebra $\mathfrak{g}$ is called a formal distribution Lie algebra if it is spanned over $\mathbb{C}$ by coefficients of a family $F$ of $\mathfrak{g}$-valued mutually local formal distributions.

Let $\mathfrak{g}$ be a Lie algebra spanned by mutually local formal distributions $a^{\alpha}(z),(\alpha \in A)$, and suppose that there exists an endomorphism $T$ of the space $\mathfrak{g}$ such that

$$
\operatorname{Ta}^{\alpha}(z)=\partial a^{\alpha}(z)
$$

Then $\mathfrak{g}$ is called a regular formal distribution Lie algebra. It is clear that $T$ is a derivation of the Lie algebra $\mathfrak{g}$ given by the formula
$T a_{n}^{\alpha}=-n a_{n-1}^{\alpha}$.

Then $\mathfrak{g}$ is called a regular formal distribution Lie algebra.
It is clear that $T$ is a derivation of the Lie algebra $\mathfrak{g}$ given by the formula

Then $\mathfrak{g}$ is called a regular formal distribution Lie algebra.
It is clear that $T$ is a derivation of the Lie algebra $\mathfrak{g}$ given by the formula

$$
T a_{n}^{\alpha}=-n a_{n-1}^{\alpha} .
$$

Let

$$
\mathfrak{g}_{--}=\left\{a \in \mathfrak{g} ; T^{k} a=0 \text { for } k \gg 0\right\} .
$$

## Let $\lambda: \mathfrak{g}_{--} \rightarrow \mathbb{C}$ be a 1-dimensional $\mathfrak{g}_{---m o d u l e ~ s u c h ~ t h a t ~}^{\text {a }}$

$$
\lambda\left(T_{\mathfrak{g}_{--}}\right)=0
$$

## Consider the induced $\mathfrak{g}$-module

$$
V^{\lambda}(\mathfrak{g}):=\operatorname{lnd}_{\mathfrak{g}--}^{\mathfrak{g}} \lambda=U(\mathfrak{g}) / U(\mathfrak{g})\left\langle a-\lambda(a) \mid a \in \mathfrak{g}_{--}\right\rangle
$$

and let $|0\rangle \in V^{\lambda}(\mathfrak{g})$ be the image of $1 \in U(\mathfrak{g})$.

Let

$$
\mathfrak{g}_{--}=\left\{a \in \mathfrak{g} ; T^{k} a=0 \text { for } k \gg 0\right\} .
$$

Let $\lambda: \mathfrak{g}_{--} \rightarrow \mathbb{C}$ be a 1-dimensional $\mathfrak{g}_{---m o d u l e ~ s u c h ~ t h a t ~}^{\text {a }}$

$$
\lambda\left(T_{\mathfrak{g}_{--}}\right)=0
$$

## Consider the induced $\mathfrak{g}$-module

$$
V^{\lambda}(\mathfrak{g}):=\operatorname{Ind}_{\mathfrak{g}_{--}}^{\mathfrak{g}} \lambda=U(\mathfrak{g}) / U(\mathfrak{g})\left\langle a-\lambda(a) \mid a \in \mathfrak{g}_{--}\right\rangle,
$$

Let

$$
\mathfrak{g}_{--}=\left\{a \in \mathfrak{g} ; T^{k} a=0 \text { for } k \gg 0\right\} .
$$

Let $\lambda: \mathfrak{g}_{--} \rightarrow \mathbb{C}$ be a 1-dimensional $\mathfrak{g}_{---m o d u l e ~ s u c h ~ t h a t ~}^{\text {a }}$

$$
\lambda\left(T_{\mathfrak{g}_{--}}\right)=0
$$

Consider the induced $\mathfrak{g}$-module

$$
V^{\lambda}(\mathfrak{g}):=\operatorname{Ind}_{\mathfrak{g}--}^{\mathfrak{g}} \lambda=U(\mathfrak{g}) / U(\mathfrak{g})\left\langle a-\lambda(a) \mid a \in \mathfrak{g}_{--}\right\rangle
$$

and let $|0\rangle \in V^{\lambda}(\mathfrak{g})$ be the image of $1 \in U(\mathfrak{g})$.

Note that the formal distributions $a^{\alpha}(z)$ are represented in $V^{\lambda}(\mathfrak{g})$ by fields (which we shall denote by the same symbol).

> The derivation $T$ of $\mathfrak{g}$ extends to a derivation of $U(\mathfrak{g})$, which can be pushed down to an endomorphism of the space $V^{\lambda}(\mathfrak{g})$ since $\lambda\left(T g_{--}\right)=0$. This endomorphism is again denoted by $T$.

Note that the formal distributions $a^{\alpha}(z)$ are represented in $V^{\lambda}(\mathfrak{g})$ by fields (which we shall denote by the same symbol).

The derivation $T$ of $\mathfrak{g}$ extends to a derivation of $U(\mathfrak{g})$, which can be pushed down to an endomorphism of the space $V^{\lambda}(\mathfrak{g})$ since $\lambda\left(T \mathfrak{g}_{--}\right)=0$. This endomorphism is again denoted by $T$.

The following theorem is now an immediate corollary of the Existence.
Theorem. Let $\mathfrak{g}$ be a regular formal distribution Lie algebra. Then the $\mathfrak{g}$-module $V^{\lambda}(\mathfrak{g})$ has a unique vertex algebra structure with $|0\rangle$ the vacuum vector and generated by the fields $a^{\alpha}(z)(\alpha \in A)$.

The vertex algebras $V^{\lambda}(\mathfrak{g})$ are called universal vertex algebras associated to $\mathfrak{g}$.

The following theorem is now an immediate corollary of the Existence.
Theorem. Let $\mathfrak{g}$ be a regular formal distribution Lie algebra. Then the $\mathfrak{g}$-module $V^{\lambda}(\mathfrak{g})$ has a unique vertex algebra structure with $|0\rangle$ the vacuum vector and generated by the fields $a^{\alpha}(z)(\alpha \in A)$.

The vertex algebras $V^{\lambda}(\mathfrak{g})$ are called universal vertex algebras associated to $\mathfrak{g}$.

The following theorem is now an immediate corollary of the Existence.
Theorem. Let $\mathfrak{g}$ be a regular formal distribution Lie algebra. Then the $\mathfrak{g}$-module $V^{\lambda}(\mathfrak{g})$ has a unique vertex algebra structure with $|0\rangle$ the vacuum vector and generated by the fields $a^{\alpha}(z)(\alpha \in A)$.

The vertex algebras $V^{\lambda}(\mathfrak{g})$ are called universal vertex algebras associated to $\mathfrak{g}$.

## Outline

(1) Vertex algebras

- Formal Calculus
- Locality
- Vertex Algebras
- Structure of VA
(2) Vertex algebras
- Other equivalent definitions of vertex algebras
- This is due to B. Bakalov and V. Kac. ( Field Algebras)

> Let $(V,|0\rangle, T)$ be a vector space with a distinguished vector and endomorphism, and let $Y$ be a state field correspondance, namely it linear map $a \mapsto Y(a, z)$ of a vector space $V$ to the space of $E n d V-$ valued fields satisfying

(translation invariance) $[T, Y(a, z)]=Y(T a, z)=\partial_{z} Y(a, z)$.
(vacuum axioms)
$Y(|0\rangle, z)=I d_{V}$ and $Y(a, z)|0\rangle=a+T(a) z+\cdots \in V[[z]]$.

- This is due to B. Bakalov and V. Kac. ( Field Algebras)

> Let $(V,|0\rangle, T)$ be a vector space with a distinguished vector and endomorphism, and let $Y$ be a state field correspondance, namely it linear map $a \mapsto Y(a, z)$ of a vector space $V$ to the space of $E n d V-$ valued fields satisfying

(translation invariance) $[T, Y(a, z)]=Y(T a, z)=\partial_{z} Y(a, z)$.
(vacuum axioms)
$Y(|0\rangle, z)=I d_{V}$ and $Y(a, z)|0\rangle=a+T(a) z+\cdots \in V[[z]]$.

- This is due to B. Bakalov and V. Kac. ( Field Algebras)

Let $(V,|0\rangle, T)$ be a vector space with a distinguished vector and endomorphism, and let $Y$ be a state field correspondance, namely it linear map $a \mapsto Y(a, z)$ of a vector space $V$ to the space of End $V$ valued fields satisfying
(translation invariance) $[T, Y(a, z)]=Y(T a, z)=\partial_{z} Y(a, z)$.
(vacuum axioms)
$Y(|0\rangle, z)=I d_{V}$ and $Y(a, z)|0\rangle=a+T(a) z+\cdots \in V[[z]]$.

- This is due to B. Bakalov and V. Kac. ( Field Algebras)

Let $(V,|0\rangle, T)$ be a vector space with a distinguished vector and endomorphism, and let $Y$ be a state field correspondance,
linear map $a \mapsto Y(a, z)$ of a vector space $V$ to the space of End $V$
valued fields satisfying
(translation invariance) $[T, Y(a, z)]=Y(T a, z)=\partial_{z} Y(a, z)$.
(vacuum axioms)
$Y(|0\rangle, z)=I d_{V}$ and $Y(a, z)|0\rangle=a+T(a) z+\cdots \in V[[z]]$.

- This is due to B. Bakalov and V. Kac. ( Field Algebras)

Let $(V,|0\rangle, T)$ be a vector space with a distinguished vector and endomorphism, and let $Y$ be a state field correspondance, namely it linear map $a \mapsto Y(a, z)$ of a vector space $V$ to the space of End $V$ valued fields satisfying
(translation invariance) $[T, Y(a, z)]=Y(T a, z)=\partial_{z} Y(a, z)$.
(vacuum axioms)
$Y(|0\rangle, z)=I d_{V}$ and $Y(a, z)|0\rangle=a+T(a) z+\cdots \in V[[z]]$.

- This is due to B. Bakalov and V. Kac. ( Field Algebras)

Let $(V,|0\rangle, T)$ be a vector space with a distinguished vector and endomorphism, and let $Y$ be a state field correspondance, namely it linear map $a \mapsto Y(a, z)$ of a vector space $V$ to the space of End $V$ valued fields satisfying
(translation invariance) $[T, Y(a, z)]=Y(T a, z)=\partial_{z} Y(a, z)$.
(vacuum axioms)
$Y(|0\rangle, z)=I d_{V}$ and $Y(a, z)|0\rangle=a+T(a) z+\cdots \in V[[z]]$.

- This is due to B. Bakalov and V. Kac. ( Field Algebras)

Let $(V,|0\rangle, T)$ be a vector space with a distinguished vector and endomorphism, and let $Y$ be a state field correspondance, namely it linear map $a \mapsto Y(a, z)$ of a vector space $V$ to the space of End $V$ valued fields satisfying
(translation invariance) $[T, Y(a, z)]=Y(T a, z)=\partial_{z} Y(a, z)$.
(vacuum axioms)
$Y(|0\rangle, z)=I d_{V}$ and $Y(a, z)|0\rangle=a+T(a) z+\cdots \in V[[z]]$.

- This is due to B. Bakalov and V. Kac. ( Field Algebras)

Let $(V,|0\rangle, T)$ be a vector space with a distinguished vector and endomorphism, and let $Y$ be a state field correspondance, namely it linear map $a \mapsto Y(a, z)$ of a vector space $V$ to the space of End $V$ valued fields satisfying
(translation invariance) $[T, Y(a, z)]=Y(T a, z)=\partial_{z} Y(a, z)$.
(vacuum axioms)
$Y(|0\rangle, z)=I d_{V}$ and $Y(a, z)|0\rangle=a+T(a) z+\cdots \in V[[z]]$.

For $a, b \in V$, we define their $\lambda$-product by the formula


## We also have the $(-1)$-st product on $V$, which we denote as

$$
a \cdot b=\operatorname{Res}_{z} z^{-1} Y(a, z) b=a_{(-1)} b .
$$

For $a, b \in V$, we define their $\lambda$-product by the formula

$$
a_{\lambda} b=\operatorname{Res}_{z} e^{\lambda z} Y(a, z) b=\sum_{n \geq 0, \text { finite }} a_{n} b(\lambda)^{(n)} .
$$

## We also have the $(-1)$-st product on $V$, which we denote as

$$
a \cdot b=\operatorname{Res}_{z} z^{-1} Y(a, z) b=a_{(-1)} b
$$

For $a, b \in V$, we define their $\lambda$-product by the formula

$$
a_{\lambda} b=\operatorname{Res}_{z} e^{\lambda z} Y(a, z) b=\sum_{n \geq 0, \text { finite }} a_{n} b(\lambda)^{(n)}
$$

## We also have the $(-1)$-st product on $V$, which we denote as

$a \cdot b=\operatorname{Res}_{z} z^{-1} Y(a, z) b=a_{(-1)} b$.

For $a, b \in V$, we define their $\lambda$-product by the formula

$$
a_{\lambda} b=\operatorname{Res}_{z} e^{\lambda z} Y(a, z) b=\sum_{n \geq 0, \text { finite }} a_{n} b(\lambda)^{(n)}
$$

We also have the (-1)-st product on $V$, which we denote as

$$
a \cdot b=\operatorname{Res}_{z} z^{-1} Y(a, z) b=a_{(-1)} b .
$$

For $a, b \in V$, we define their $\lambda$-product by the formula

$$
a_{\lambda} b=\operatorname{Res}_{z} e^{\lambda z} Y(a, z) b=\sum_{n \geq 0, \text { finite }} a_{n} b(\lambda)^{(n)}
$$

We also have the $(-1)$-st product on $V$, which we denote as

$$
a \cdot b=\operatorname{Res}_{z} z^{-1} Y(a, z) b=a_{(-1)} b .
$$

For $a, b \in V$, we define their $\lambda$-product by the formula

$$
a_{\lambda} b=\operatorname{Res}_{z} e^{\lambda z} Y(a, z) b=\sum_{n \geq 0, \text { finite }} a_{n} b(\lambda)^{(n)}
$$

We also have the $(-1)$-st product on $V$, which we denote as

$$
a \cdot b=\operatorname{Res}_{z} z^{-1} Y(a, z) b=a_{(-1)} b
$$

The vacuum axioms for $Y$ imply:

$$
|0\rangle \cdot a=a=a \cdot|0\rangle,
$$

## while the translation invariance axiom shows that:

$$
T(a \cdot b)=(T a) \cdot b+a \cdot(T b)
$$

$$
\begin{gathered}
T\left(a_{\lambda} b\right)=(T a)_{\lambda} b+a_{\lambda}(T b), \\
(T a)_{\lambda} b=-\lambda a_{\lambda} b \text { for all } a, b \in V .
\end{gathered}
$$

## Notice that equations above imply

$$
T|0\rangle=0 \quad \text { and } \quad|0\rangle_{\lambda} a=0=a_{\lambda}|0\rangle \quad \text { for } a \in V
$$

The vacuum axioms for $Y$ imply:

$$
|0\rangle . a=a=a .|0\rangle,
$$

## while the translation invariance axiom shows that:

$$
T(a \cdot b)=(T a) \cdot b+a \cdot(T b)
$$

$$
\begin{gathered}
T\left(a_{\lambda} b\right)=(T a)_{\lambda} b+a_{\lambda}(T b), \\
(T a)_{\lambda} b=-\lambda a_{\lambda} b \text { for all } a, b \in V .
\end{gathered}
$$

## Notice that equations above imply



The vacuum axioms for $Y$ imply:

$$
|0\rangle . a=a=a .|0\rangle,
$$

while the translation invariance axiom shows that:

$$
T(a \cdot b)=(T a) \cdot b+a \cdot(T b)
$$

$$
\begin{gathered}
T\left(a_{\lambda} b\right)=(T a)_{\lambda} b+a_{\lambda}(T b) \\
(T a)_{\lambda} b=-\lambda a_{\lambda} b \text { for all } a, b \in V .
\end{gathered}
$$

## Notice that equations above imply

The vacuum axioms for $Y$ imply:

$$
|0\rangle \cdot a=a=a \cdot|0\rangle,
$$

while the translation invariance axiom shows that:

$$
T(a \cdot b)=(T a) \cdot b+a \cdot(T b)
$$

$$
\begin{gathered}
T\left(a_{\lambda} b\right)=(T a)_{\lambda} b+a_{\lambda}(T b) \\
(T a)_{\lambda} b=-\lambda a_{\lambda} b \text { for all } a, b \in V .
\end{gathered}
$$

## Notice that equations above imply

The vacuum axioms for $Y$ imply:

$$
|0\rangle \cdot a=a=a \cdot|0\rangle,
$$

while the translation invariance axiom shows that:

$$
T(a \cdot b)=(T a) \cdot b+a \cdot(T b)
$$

and

$$
\begin{gathered}
T\left(a_{\lambda} b\right)=(T a)_{\lambda} b+a_{\lambda}(T b) \\
(T a)_{\lambda} b=-\lambda a_{\lambda} b \text { for all } a, b \in V
\end{gathered}
$$

## Notice that equations above imply

The vacuum axioms for $Y$ imply:

$$
|0\rangle . a=a=a .|0\rangle,
$$

while the translation invariance axiom shows that:

$$
T(a \cdot b)=(T a) \cdot b+a \cdot(T b)
$$

and

$$
\begin{gathered}
T\left(a_{\lambda} b\right)=(T a)_{\lambda} b+a_{\lambda}(T b) \\
(T a)_{\lambda} b=-\lambda a_{\lambda} b \text { for all } a, b \in V
\end{gathered}
$$

Notice that equations above imply

$$
T|0\rangle=0 \quad \text { and } \quad|0\rangle_{\lambda} a=0=a_{\lambda}|0\rangle \quad \text { for } a \in V
$$

Conversely, if we are given a linear operator $T$,
a $\lambda$-product and a .-product on V, satisfying the above properties, we can reconstruct the state field correspondence $Y$ by the formulas:

$$
\begin{gathered}
Y(a, z)+b=\left(e^{2 T} a\right) \cdot b \\
Y(a, z)-b=\left(a-\partial_{z} b\right)\left(z^{-1}\right),
\end{gathered}
$$

Conversely, if we are given a linear operator $T$, a $\lambda$-product and a .-product on $V$, satisfying the above properties, we can reconstruct the state field correspondence $Y$ by the formulas:

$$
Y(a, z)_{+} b=\left(e^{z T} a\right) \cdot b
$$

$$
Y(a, z)_{-} b=\left(a_{-\partial_{z}} b\right)\left(z^{-1}\right),
$$

Conversely, if we are given a linear operator $T$, a $\lambda$-product and a .-product on $V$, satisfying the above properties, we can reconstruct the state field correspondence $Y$ by the formulas:

$$
Y(a, z)_{+} b=\left(e^{z T} a\right) \cdot b
$$

and

$$
Y(a, z)_{-} b=\left(a_{-\partial_{z}} b\right)\left(z^{-1}\right)
$$

A $\mathbb{C}[T]$-module $V$, equipped with a linear map $V \otimes V \rightarrow \mathbb{C}[\lambda] \otimes V$, $a \otimes b \rightarrow a \lambda b$, satisfying

$$
T\left(a_{\lambda} b\right)=(T a)_{\lambda} b+a_{\lambda}(T b),
$$

is called a $(\mathbb{C}[T]-)$ conformal algebra.

On the other hand, with respect to the .-product, $V$ is a
$(\mathbb{C}[T]-$ ) differential algebra (i.e., an algebra with a derivation $T$ ) with a

A $\mathbb{C}[T]$-module $V$, equipped with a linear map $V \otimes V \rightarrow \mathbb{C}[\lambda] \otimes V$, $a \otimes b \rightarrow a \lambda b$, satisfying

$$
T\left(a_{\lambda} b\right)=(T a)_{\lambda} b+a_{\lambda}(T b),
$$

$(T a)_{\lambda} b=-\lambda a_{\lambda} b$ for all $a, b \in V$.
is called a $(\mathbb{C}[T]-)$ conformal algebra.
On the other hand, with respect to the .-product, $V$ is a
$(\mathbb{C}[T]-$ ) differential algebra (i.e., an algebra with a derivation $T$ ) with a

A $\mathbb{C}[T]$-module $V$, equipped with a linear map $V \otimes V \rightarrow \mathbb{C}[\lambda] \otimes V$, $a \otimes b \rightarrow a \lambda b$, satisfying

$$
\begin{gathered}
T\left(a_{\lambda} b\right)=(T a)_{\lambda} b+a_{\lambda}(T b) \\
(T a)_{\lambda} b=-\lambda a_{\lambda} b \text { for all } a, b \in V
\end{gathered}
$$

is called a $(\mathbb{C}[T]-)$ conformal algebra.
On the other hand, with respect to the .-product, $V$ is a $(\mathbb{C}[T]-$ ) differential algebra (i.e., an algebra with a derivation $T$ ) with a unit |0〉.

## Summarizing:

Giving a state field correspondence on a vector space $V$ with a distinguished vector $|0\rangle$ is equivalent to providing $V$ with a structure of a $\mathbb{C}[T]$-conformal algebra and a structure of a $\mathbb{C}[T]$-differential algebra with a unit $|0\rangle$.

To have a vertex algebra we still have to deal with locality!!!!

## Summarizing:

Giving a state field correspondence on a vector space $V$ with a distinguished vector $|0\rangle$ is equivalent to providing $V$ with a structure of a $\mathbb{C}[T]$-conformal algebra and a structure of a $\mathbb{C}[T]$-differential algebra with a unit $|0\rangle$.

To have a vertex algebra we still have to deal with locality!!!!

Summarizing:
Giving a state field correspondence on a vector space $V$ with a distinguished vector $|0\rangle$ is equivalent to providing $V$ with a structure of a $\mathbb{C}[T]$-conformal algebra and a structure of a $\mathbb{C}[T]$-differential algebra with a unit $|0\rangle$.

To have a vertex algebra we still have to deal with locality!!!!

Summarizing:
Giving a state field correspondence on a vector space $V$ with a distinguished vector $|0\rangle$ is equivalent to providing $V$ with a structure of a $\mathbb{C}[T]$-conformal algebra and a structure of a $\mathbb{C}[T]$-differential algebra with a unit $|0\rangle$.

To have a vertex algebra we still have to deal with locality!!!!

An algebra satisfying

$$
a .(b . c)-b .(a . c)=(a . b-b . a) . c
$$

for all $a, b, c \in V$ is called left-symmetric.

## A Liebnitz conformal algebra is a $\mathbb{C}[T]$-conformal algebra such that the following Jacobi identity holds:

$$
\left(a_{\lambda} b\right)_{\lambda+\mu} c=a_{\lambda}\left(b_{\mu} c\right)-b_{\mu}\left(a_{\lambda} c\right) .
$$

## And the Wick formula is

$$
a_{\lambda}(b . c)=\left(a_{\lambda} b\right) \cdot c+b \cdot\left(a_{\lambda} c\right)+\int_{0}^{\lambda}\left(a_{\lambda} b\right)_{\mu} c d \mu .
$$

An algebra satisfying

$$
a .(b . c)-b .(a . c)=(a . b-b . a) \cdot c
$$

for all $a, b, c \in V$ is called left-symmetric.

A Liebnitz conformal algebra is a $\mathbb{C}[T]$-conformal algebra such that the following Jacobi identity holds:

$$
\left(a_{\lambda} b\right)_{\lambda+\mu} c=a_{\lambda}\left(b_{\mu} c\right)-b_{\mu}\left(a_{\lambda} c\right)
$$

An algebra satisfying

$$
a .(b . c)-b \cdot(a . c)=(a \cdot b-b \cdot a) \cdot c
$$

for all $a, b, c \in V$ is called left-symmetric.
A Liebnitz conformal algebra is a $\mathbb{C}[T]$-conformal algebra such that the following Jacobi identity holds:

$$
\left(a_{\lambda} b\right)_{\lambda+\mu} c=a_{\lambda}\left(b_{\mu} c\right)-b_{\mu}\left(a_{\lambda} c\right)
$$

And the Wick formula is

$$
a_{\lambda}(b . c)=\left(a_{\lambda} b\right) \cdot c+b \cdot\left(a_{\lambda} c\right)+\int_{0}^{\lambda}\left(a_{\lambda} b\right)_{\mu} c d \mu
$$

Theorem Giving a vertex algebra structure on a vector space $V$ with a distinguished vector $|0\rangle$ is the same as providing $V$ with the structures of a Lie $\mathbb{C}[T]$-conformal algebra and a left symmetric $\mathbb{C}[T]$-differential algebra with a unit $|0\rangle$, satisfying the Wick formula and

$$
a \cdot b-b \cdot a=\int_{-T}^{0} a_{\lambda} b d \lambda \quad a, b \in V .
$$

- Lepowsky-Li's definition of vertex algebra.


## Notation:

## Delta function:

Binomial expansion: For $n \in \mathbb{Z}$

where $\binom{n}{j}=\frac{n(n-1)(n-2) \ldots(n-j+1)}{j!}$

- Lepowsky-Li's definition of vertex algebra.


## Notation:

## Delta function:

Binomial expansion: For $n \in \mathbb{Z}$


- Lepowsky-Li's definition of vertex algebra.


## Notation:

Delta function:

$$
\delta(x)=\sum_{n \in \mathbb{Z}} \in \mathbb{C}\left[\left[x, x^{-1}\right]\right] .
$$

Binomial expansion: For $n \in \mathbb{Z}$


- Lepowsky-Li's definition of vertex algebra.


## Notation:

Delta function:

$$
\delta(x)=\sum_{n \in \mathbb{Z}} \in \mathbb{C}\left[\left[x, x^{-1}\right]\right] .
$$

Binomial expansion: For $n \in \mathbb{Z}$


- Lepowsky-Li's definition of vertex algebra.


## Notation:

Delta function:

$$
\delta(x)=\sum_{n \in \mathbb{Z}} \in \mathbb{C}\left[\left[x, x^{-1}\right]\right] .
$$

Binomial expansion: For $n \in \mathbb{Z}$

$$
(x+y)^{n}=\sum_{j \in \mathbb{Z}_{+}}\binom{n}{j} x^{n-j} y^{j}
$$

where $\binom{n}{j}=\frac{n(n-1)(n-2) \ldots(n-j+1)}{j!}$

- Lepowsky-Li's definition of vertex algebra.


## Notation:

Delta function:

$$
\delta(x)=\sum_{n \in \mathbb{Z}} \in \mathbb{C}\left[\left[x, x^{-1}\right]\right] .
$$

Binomial expansion: For $n \in \mathbb{Z}$

$$
(x+y)^{n}=\sum_{j \in \mathbb{Z}_{+}}\binom{n}{j} x^{n-j} y^{j}
$$

where $\binom{n}{j}=\frac{n(n-1)(n-2) \ldots .(n-j+1)}{j!}$

A vertex algebra consists of a vector space $V$ together with a distinguished element $\mathbf{1} \in V$ called vacuum vector and a linear map

$$
\begin{aligned}
Y(\cdot, x): V & \rightarrow(\text { End } V)\left[\left[x, x^{-1}\right]\right] \\
u & \mapsto Y(u, x)=\sum_{n \in \mathbb{Z}} u_{n} x^{-n-1},
\end{aligned}
$$

satisfying the following axioms:

A vertex algebra consists of a vector space $V$ together with a distinguished element $\mathbf{1} \in V$ called vacuum vector and a linear map

$$
\begin{aligned}
Y(\cdot, x): & V \rightarrow(\text { End } V)\left[\left[x, x^{-1}\right]\right] \\
& u \mapsto Y(u, x)=\sum_{n \in \mathbb{Z}} u_{n} x^{-n-1},
\end{aligned}
$$

satisfying the following axioms:

- Truncation: For all $u, v \in U$,

$$
\begin{equation*}
Y(u, x) v \in V((x)) . \tag{1}
\end{equation*}
$$

This axiom is equivalent to requiring $u_{n} v=0$ for $n \gg 0$.

A vertex algebra consists of a vector space $V$ together with a distinguished element $\mathbf{1} \in V$ called vacuum vector and a linear map

$$
\begin{aligned}
Y(\cdot, x): & V \rightarrow(\text { End } V)\left[\left[x, x^{-1}\right]\right] \\
& u \mapsto Y(u, x)=\sum_{n \in \mathbb{Z}} u_{n} x^{-n-1},
\end{aligned}
$$

satisfying the following axioms:

- Truncation: For all $u, v \in U$,

$$
\begin{equation*}
Y(u, x) v \in V((x)) . \tag{1}
\end{equation*}
$$

This axiom is equivalent to requiring $u_{n} v=0$ for $n \gg 0$.

A vertex algebra consists of a vector space $V$ together with a distinguished element $\mathbf{1} \in V$ called vacuum vector and a linear map

$$
\begin{aligned}
Y(\cdot, x): & V \rightarrow(\text { End } V)\left[\left[x, x^{-1}\right]\right] \\
& u \mapsto Y(u, x)=\sum_{n \in \mathbb{Z}} u_{n} x^{-n-1},
\end{aligned}
$$

satisfying the following axioms:

- Truncation: For all $u, v \in U$,

$$
\begin{equation*}
Y(u, x) v \in V((x)) . \tag{1}
\end{equation*}
$$

This axiom is equivalent to requiring $u_{n} v=0$ for $n \gg 0$.

- Left unit: For all $u \in V$,

$$
\begin{equation*}
Y(\mathbf{1}, \mathbf{x}) \mathbf{u}=\mathbf{u} . \tag{2}
\end{equation*}
$$

A vertex algebra consists of a vector space $V$ together with a distinguished element $\mathbf{1} \in V$ called vacuum vector and a linear map

$$
\begin{aligned}
Y(\cdot, x): & V \rightarrow(\text { End } V)\left[\left[x, x^{-1}\right]\right] \\
& u \mapsto Y(u, x)=\sum_{n \in \mathbb{Z}} u_{n} x^{-n-1},
\end{aligned}
$$

satisfying the following axioms:

- Truncation: For all $u, v \in U$,

$$
\begin{equation*}
Y(u, x) v \in V((x)) . \tag{1}
\end{equation*}
$$

This axiom is equivalent to requiring $u_{n} v=0$ for $n \gg 0$.

- Left unit: For all $u \in V$,

$$
\begin{equation*}
Y(\mathbf{1}, \mathbf{x}) \mathbf{u}=\mathbf{u} . \tag{2}
\end{equation*}
$$

A vertex algebra consists of a vector space $V$ together with a distinguished element $\mathbf{1} \in V$ called vacuum vector and a linear map

$$
\begin{aligned}
Y(\cdot, x): & V \rightarrow(\text { End } V)\left[\left[x, x^{-1}\right]\right] \\
& u \mapsto Y(u, x)=\sum_{n \in \mathbb{Z}} u_{n} x^{-n-1},
\end{aligned}
$$

satisfying the following axioms:

- Truncation: For all $u, v \in U$,

$$
\begin{equation*}
Y(u, x) v \in V((x)) . \tag{1}
\end{equation*}
$$

This axiom is equivalent to requiring $u_{n} v=0$ for $n \gg 0$.

- Left unit: For all $u \in V$,

$$
\begin{equation*}
Y(\mathbf{1}, \mathbf{x}) \mathbf{u}=\mathbf{u} . \tag{2}
\end{equation*}
$$

- Creation: For all $u \in V, Y(u, x) \mathbf{1}$ is a holomorphic power series in $x$ and

$$
\begin{equation*}
\left.Y(u, x) \mathbf{1}\right|_{\mathbf{x}=\mathbf{0}}=\mathbf{u} . \tag{3}
\end{equation*}
$$

- Jacobi identity: For all $u, v \in V$,

$$
\begin{align*}
& x_{0}^{-1} \delta\left(\frac{x_{1}-x_{2}}{x_{0}}\right) Y\left(u, x_{1}\right) Y\left(v, x_{2}\right)-x_{0}^{-1} \delta\left(\frac{x_{2}-x_{1}}{-x_{0}}\right) Y\left(v, x_{2}\right) Y\left(u, x_{1}\right) \\
&=x_{2}^{-1} \delta\left(\frac{x_{1}-x_{0}}{x_{2}}\right) Y\left(Y\left(u, x_{0}\right) v, x_{2}\right) \tag{4}
\end{align*}
$$

## Remarks:

- They don't ask $T$ to be part of the definition! They show that if we define $T(v)=v_{-2} 1$ for all $v \in V$ then

$$
Y(T v, x)=\frac{d}{d x} Y(v, x)
$$

They show that skew symmetry

$$
Y(u, x) v=e^{2 T} Y(v,-x) u
$$

also holds starting from Jacobi identity instead of locality.
Using skew symmetry they show that

$$
[T, Y(v, x)]=\frac{d}{d x} Y(v, x)=Y(T V, x)
$$

called T-bracket-derivative formula

## Remarks:

- They don't ask $T$ to be part of the definition! They show that if we define $T(v)=v_{-2} 1$ for all $v \in V$ then

$$
Y(T v, x)=\frac{d}{d x} Y(v, x)
$$

## They show that skew symmetry <br> $$
Y(u, x) v=e^{2 T} Y(v,-x) u
$$

also holds starting from Jacobi identity instead of locality.
Using skew symmetry they show that

$$
[T, Y(v, x)]=\frac{d}{d x} Y(v, x)=Y(T V, x)
$$

## called $T$-bracket-derivative formula

## Remarks:

- They don't ask $T$ to be part of the definition! They show that if we define $T(v)=v_{-2} 1$ for all $v \in V$ then

$$
Y(T v, x)=\frac{d}{d x} Y(v, x)
$$

They show that skew symmetry

$$
Y(u, x) v=e^{z T} Y(v,-x) u
$$

also holds starting from Jacobi identity instead of locality.
Using skew symmetry they show that


## Remarks:

- They don't ask $T$ to be part of the definition! They show that if we define $T(v)=v_{-2} 1$ for all $v \in V$ then

$$
Y(T v, x)=\frac{d}{d x} Y(v, x)
$$

They show that skew symmetry

$$
Y(u, x) v=e^{z T} Y(v,-x) u
$$

also holds starting from Jacobi identity instead of locality.
Using skew symmetry they show that

$$
[T, Y(v, x)]=\frac{d}{d x} Y(v, x)=Y(T v, x)
$$

called $T$-bracket-derivative formula

- Locality is called weak commutatitvity.


## They deduce Locality from Jacobi identity.

Then the prove the following

Proposition:The Jacobi identity for a vertex algebra follows from weak commutativity in the presence of the other axioms together with the T-bracket-derivative formula. In particular, in the definition of the notion of vertex algebra, the Jacobi identity can be replaced by these properties.

Namely, both definitions are equivalent

- Locality is called weak commutatitvity.

They deduce Locality from Jacobi identity.
Then the prove the following

Proposition:The Jacobi identity for a vertex algebra follows from weak commutativity in the presence of the other axioms together with the T-bracket-derivative formula. In particular, in the definition of the notion of vertex algebra, the Jacobi identity can be replaced by these properties.

Namely, both definitions are equivalent

- Locality is called weak commutatitvity.

They deduce Locality from Jacobi identity.
Then the prove the following

Proposition:The Jacobi identity for a vertex algebra follows from weak commutativity in the presence of the other axioms together with the T-bracket-derivative formula. In particular, in the definition of the notion of vertex algebra, the Jacobi identity can be replaced by these properties.

Namely, both definitions are equivalent

- Locality is called weak commutatitvity.

They deduce Locality from Jacobi identity.
Then the prove the following

Proposition:The Jacobi identity for a vertex algebra follows from weak commutativity in the presence of the other axioms together with the $T$-bracket-derivative formula. In particular, in the definition of the notion of vertex algebra, the Jacobi identity can be replaced by these properties.

Namely, both definitions are equivalent

- Locality is called weak commutatitvity.

They deduce Locality from Jacobi identity.
Then the prove the following

Proposition:The Jacobi identity for a vertex algebra follows from weak commutativity in the presence of the other axioms together with the $T$-bracket-derivative formula. In particular, in the definition of the notion of vertex algebra, the Jacobi identity can be replaced by these properties.

Namely, both definitions are equivalent

## Bibliography

[BK] B. Bakalov and V. Kac, Field Algebras, Internat.Mat.Res.Notices3 (2003), 123-159.
[FHL]l. Frenkel, Y.-Z Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Memoirs Amer. Math.Soc. 104 (1993).
[FLM]I. Frenkel, J.Lepowsky and A.Meurman, Vertex Operator Algebras and the Monster, Pure and Appl. Math., Vol.134, Academics Press, Boston (1988).
[K1] V. Kac, Vertex Algebra for Begginers, 2ed., AMS (1998).
[LL] J.Lepowsky and H.-S, Introduction to Vertex Operator Algebras and Their Representations, Progress in Math. Vol. 227, Birkhäuser, Boston (2003).

